Skip to main content
Log in

Eudragit-Based Nanosuspension of Poorly Water-Soluble Drug: Formulation and In VitroIn Vivo Evaluation

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The present study was performed to investigate potential of Eudragit RLPO-based nanosuspension of glimepiride (Biopharmaceutical Classification System class II drug), for the improvement of its solubility and overall therapeutic efficacy, suitable for peroral administration. Nanoprecipitation method being simple and less sophisticated was optimized for the preparation of nanosuspension. Physicochemical characteristics of nanosuspension in terms of size, zeta potential, polydispersity index, entrapment efficiency (% EE) and in vitro drug release were found within their acceptable ranges. The size of the nanoparticles was most strongly affected by agitation time while % EE was more influenced by the drug/polymer ratio. Differential scanning calorimetry and X-ray diffraction studies provided evidence that enhancement in solubility of drug resulted due to change in crystallinity of drug within the formulation. Stability study revealed that nanosuspension was more stable at refrigerated condition with no significant changes in particle size distribution, % EE, and release characteristics for 3 months. In vivo studies were performed on nicotinamide–streptozotocin-induced diabetic rat models for pharmacokinetic and antihyperglycaemic activity. Nanosuspension increased maximum plasma concentration, area under the curve, and mean residence time values significantly as compared to aqueous suspension. Oral glucose tolerance test and antihyperglycaemic studies demonstrated plasma glucose levels were efficiently controlled in case of nanosuspension than glimepiride suspension. Briefly, sustained and prolonged activity of nanosuspensions could reduce dose frequency, decrease drug side effects, and improve patient compliance. Therefore, glimepiride nanosuspensions can be expected to gain considerable attention in the treatment of type 2 diabetes mellitus due to its improved therapeutic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

REFERENCES

  1. Ammar HO, Salama HA, Ghorab M, Mahmoud AA. Formulation and biological evaluation of glimepiride–cyclodextrin–polymer systems. Int J Pharm. 2006;309(1–2):129–38.

    Article  PubMed  CAS  Google Scholar 

  2. Frick A, Moller H, Wirbitzki E. Biopharmaceutical characterization of oral immediate release drug products. In vitro/in vivo comparison of phenoxymethylpenicillin potassium, glimepiride and levofloxacin. Eur J Pharm Biopharm. 1998;46(3):305–11.

    Article  PubMed  CAS  Google Scholar 

  3. Ilic I, Dreu R, Burjak M, Homar M, Kerc J, Srcic S. Microparticle size control and glimepiride microencapsulation using spray congealing technology. Int J Pharm. 2009;381(2):176–83.

    Article  PubMed  CAS  Google Scholar 

  4. Babu RJ, Pandit JK. Effect of aging on the dissolution stability of glibenclamide/beta-cyclodextrin complex. Drug Dev Ind Pharm. 1999;25(11):1215–9.

    Article  PubMed  CAS  Google Scholar 

  5. Reven S, Grdadolnik J, Kristl J, Zagar E. Hyperbranched poly(esteramides) as solubility enhancers for poorly water-soluble drug glimepiride. Int J Pharm. 2010;396(1–2):119–26.

    Article  PubMed  CAS  Google Scholar 

  6. Junghanns JUAH, Muller RH. Nanocrystal technology, drug delivery and clinical applications. Int J Nanomedicine. 2008;3(3):295–309.

    PubMed  CAS  Google Scholar 

  7. Kesisoglou F, Panmai S, Wu Y. Nanosizing—oral formulation development and biopharmaceutical evaluation. Adv Drug Deliv Rev. 2007;59(7):631–44.

    Article  PubMed  CAS  Google Scholar 

  8. Jacobs C, Muller RH. Production and characterization of a budesonide nanosuspension for pulmonary administration. Pharm Res. 2002;19(2):189–94.

    Article  PubMed  CAS  Google Scholar 

  9. Kipp JE. The role of solid nanoparticle technology in the parenteral delivery of poorly water-soluble drugs. Int J Pharm. 2004;284(1–2):109–22.

    Article  PubMed  CAS  Google Scholar 

  10. Merisko-Liversidge EM, Liversidge GG. Drug nanoparticles: formulating poorly water-soluble compounds. Toxicol Pathol. 2008;36(1):43–8.

    Article  PubMed  CAS  Google Scholar 

  11. Verma S, Gokhale R, Burgess DJ. A comparative study of top-down and bottom-up approaches for the preparation of micro/nanosuspensions. Int J Pharm. 2009;380(1–2):216–22.

    Article  PubMed  CAS  Google Scholar 

  12. Muller RH, Jacobs C. Buparvaquone mucoadhesive nanosuspension: preparation, optimisation and long-term stability. Int J Pharm. 2002;237(1–2):151–61.

    Article  PubMed  CAS  Google Scholar 

  13. Reichal CR, Lakshmi JB, Ravi TK. Studies on formulation and in vitro evaluation of glimepiride floating tablets. J Chem Pharm Res. 2011;3(3):159–64.

    Google Scholar 

  14. Fessi H, Puisieux F, Devissaguet JP, Ammoury N, Benita S. Nanocapsule formation by interfacial polymer deposition following solvent displacement. Int J Pharm. 1989;55(1):R1–4.

    Article  CAS  Google Scholar 

  15. Guterres SS, Fessi H, Barratt G, Devissaguet JP, Puisieux F. Poly(dl-lactide) nanocapsules containing diclofenac: I. Formulation and stability study. Int J Pharm. 1995;113(1):57–63.

    Article  CAS  Google Scholar 

  16. Abdelwahed W, Degobert G, Stainmesse S, Fessi H. Freeze-drying of nanoparticles: formulation, process and storage considerations. Adv Drug Deliv Rev. 2006;58(15):1688–713.

    Article  PubMed  CAS  Google Scholar 

  17. Omari DM, Sallam A, Abd-Elbary A, El-Samaligy M. Lactic acid-induced modifications in films of Eudragit RL and RS aqueous dispersions. Int J Pharm. 2004;274(1–2):85–96.

    Article  PubMed  CAS  Google Scholar 

  18. Amlathe S, Gupta VK. Spectrophotometric determination of acetone using vanillin. Analyst. 1990;115(10):1385–7.

    Article  PubMed  CAS  Google Scholar 

  19. Chorny M, Fishbein I, Danenberg HD, Golomb G. Lipophilic drug loaded nanospheres prepared by nanoprecipitation: effect of formulation variables on size, drug recovery and release kinetics. J Control Release. 2002;83(3):389–400.

    Article  PubMed  CAS  Google Scholar 

  20. Mishra B, Arya N, Tiwari S. Investigation of formulation variables affecting the properties of lamotrigine nanosuspension using fractional factorial design. Daru. 2010;18(1):1–8.

    CAS  Google Scholar 

  21. Rabbaa-Khabbaz L, Daoud RA, Karam-Sarkis D, Atallah C, Zoghbi A. A simple and sensitive method for determination of glimepiride in human serum by HPLC. J Liq Chromatogr Relat Technol. 2005;28(20):3255–63.

    Article  CAS  Google Scholar 

  22. Masiello P, Broca C, Gross R, Roye M, Manteghetti M, Hillaire-Buys D, et al. Experimental NIDDM: development of a new model in adult rats administered streptozotocin and nicotinamide. Diabetes. 1998;47(2):224–9.

    Article  PubMed  CAS  Google Scholar 

  23. Shirwaikar A, Rajendran K, Kumar CD, Bodla R. Antidiabetic activity of aqueous leaf extract of Annona squamosa in streptozotocin-nicotinamide type 2 diabetic rats. J Ethnopharmacol. 2004;91(1):171–5.

    Article  PubMed  Google Scholar 

  24. Lott JA, Turner K. Evaluation of Trinder’s glucose oxidase method for measuring glucose in serum and urine. Clin Chem. 1975;21(12):1754–60.

    PubMed  CAS  Google Scholar 

  25. Kuppusamy A, Muthusamy U, Thirumalaisamy SA, Varadharajan S, Ramasamy K, Ramanathan S. In vitro (α-glucosidase and α-amylase inhibition) and in vivo antidiabetic property of phytic Acid (IP6) in streptozotocin–nicotinamide-induced type 2 diabetes mellitus (NIDDM) in rats. J Complement Integr Med. 2011;8(1):doi:10.2202/1553-3840.1483.

    Google Scholar 

  26. Pignatello R, Bucolo C, Ferrara P, Maltese A, Puleo A, Puglisi G. Preparation and characterization of Eudragit retard nanosuspensions for the ocular delivery of cloricromene. AAPS PharmSciTech. 2006;7(1):E192–8. doi:10.1208/pt070127.

    Article  Google Scholar 

  27. Dillen K, Vandervoort J, Mooter GV, Ludwig A. Evaluation of ciprofloxacin-loaded Eudragit® RS100 or RL100/PLGA nanoparticles. Int J Pharm. 2006;314(1):72–82.

    Article  PubMed  CAS  Google Scholar 

  28. Murakami H, Kobayashi M, Takeuchi H, Kawashima Y. Preparation of poly(dl-lactide-co-glycolide) nanoparticles by modified spontaneous emulsification solvent diffusion method. Int J Pharm. 1999;187(2):143–52.

    Article  PubMed  CAS  Google Scholar 

  29. Ubrich N, Schmidt C, Bodmeier R, Hoffman M, Maincent P. Oral evaluation in rabbits of cyclosporin-loaded Eudragit RS or RL nanoparticles. Int J Pharm. 2005;288(1):169–75.

    Article  PubMed  CAS  Google Scholar 

  30. Bayems V, Gurny R. Chemical and physical parameters of tears relevant for the design of ocular drug delivery formulations. Pharm Acta Helv. 1997;72(4):191–202.

    Article  Google Scholar 

  31. Das S, Suresh PK, Desmukh R. Design of Eudragit RL 100 nanoparticles by nanoprecipitation method for ocular drug delivery. Nanomedicine. 2010;6(2):318–23.

    Article  PubMed  CAS  Google Scholar 

  32. Thioune O, Fessi H, Devissaguet JP, Puisieux F. Preparation of pseudolatex by nanoprecipitation: influence of the solvent nature on intrinsic viscosity and interaction constant. Int J Pharm. 1997;146(2):233–8.

    Article  CAS  Google Scholar 

  33. Passerini N, Albertini B, Gonzalez-Rodriguez ML, Cavallari C, Rodriguez L. Preparation and characterisation of ibuprofen-poloxamer 188 granules obtained by melt granulation. Eur J Pharm Sci. 2002;15(1):71–8.

    Article  PubMed  CAS  Google Scholar 

  34. Liu D, Fei X, Wang S, Jiang T, Su D. Increasing solubility and dissolution rate of drugs via eutectic mixtures: itraconazole-poloxamer188 system. Asian J Pharm Sci. 2006;1(3–4):213–21.

    CAS  Google Scholar 

  35. Glaessl B, Siepmann F, Tucker I, Siepmann J, Rades T. Characterisation of quaternary polymethacrylate films containing tartaric acid, metoprolol free base or metoprolol tartrate. Eur J Pharm Biopharm. 2009;73(3):366–72.

    Article  PubMed  CAS  Google Scholar 

  36. Dandagi P, Kerur S, Mastiholimath V, Gadad A, Kulkarni A. Polymeric ocular nanosuspension for controlled release of acyclovir: in vitro release and ocular distribution. IJPR. 2009;8(2):79–86.

    CAS  Google Scholar 

  37. Xie J, Wang CH. Self-assembled biodegradable nanoparticles developed by direct dialysis for the delivery of paclitaxel. Pharm Res. 2005;22(12):2079–90.

    Article  PubMed  CAS  Google Scholar 

  38. Kim YI, Fluckiger L, Hoffman M, Lartaud-Idjouadiene I, Atkinson J, Maincent P. The antihypertensive effect of orally administered nifedipine-loaded nanoparticles in spontaneously hypertensive rats. Br J Pharmacol. 1997;120(3):399–404.

    Article  PubMed  CAS  Google Scholar 

  39. Swanston-Flatt SK, Day C, Bailey CJ, Flatt PR. Traditional plant treatment for diabetes: studies in normal and streptozotocin diabetic mice. Diabetologia. 1990;33(8):462–4.

    Article  PubMed  CAS  Google Scholar 

  40. Mastrocola R, Reffo P, Penna F, Tomasinelli CE, Boccuzzi G, Baccino FM, et al. Muscle wasting in diabetic and in tumor-bearing rats: role of oxidative stress. Free Radic Biol Med. 2008;44(4):584–93.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The first author acknowledges financial assistance from University Grants Commission (UGC), New Delhi, for carrying out this research work. All authors would like to acknowledge Department of Applied Physics and Department of Chemistry, Banaras Hindu University, India for providing facility of XRD and DSC. We are also thankful to Alkem Laboratories, Lupin Pharma Labs and Ranbaxy laboratories for providing gift samples of drug and polymers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brahmeshwar Mishra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yadav, S.K., Mishra, S. & Mishra, B. Eudragit-Based Nanosuspension of Poorly Water-Soluble Drug: Formulation and In VitroIn Vivo Evaluation. AAPS PharmSciTech 13, 1031–1044 (2012). https://doi.org/10.1208/s12249-012-9833-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-012-9833-0

KEY WORDS

Navigation