Skip to main content

Advertisement

Log in

How Has CDER Prepared for the Nano Revolution? A Review of Risk Assessment, Regulatory Research, and Guidance Activities

  • Regulatory Note
  • Theme: Nanotechnology in Complex Drug Products: Learning from the Past, Preparing for the Future
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

The Nanotechnology Risk Assessment Working Group in the Center for Drug Evaluation and Research (CDER) within the United States Food and Drug Administration (FDA) was established to assess the potential impact of nanotechnology on drug products. One of the working group’s major initiatives has been to conduct a comprehensive risk management exercise regarding the potential impact of nanomaterial pharmaceutical ingredients and excipients on drug product quality, safety, and efficacy. This exercise concluded that current review practices and regulatory guidance are capable of detecting and managing the potential risks to quality, safety, and efficacy when a drug product incorporates a nanomaterial. However, three risk management areas were identified for continued focus during the review of drug products containing nanomaterials: (1) the understanding of how to perform the characterization of nanomaterial properties and the analytical methods used for this characterization, (2) the adequacy of in vitro tests to evaluate drug product performance for drug products containing nanomaterials, and (3) the understanding of properties arising from nanomaterials that may result in different toxicity and biodistribution profiles for drug products containing nanomaterials. CDER continues to actively track the incorporation of nanomaterials in drug products and the methodologies used to characterize them, in order to continuously improve the readiness of our science- and risk-based review approaches. In parallel to the risk management exercise, CDER has also been supporting regulatory research in the area of nanotechnology, specifically focused on characterization, safety, and equivalence (between reference and new product) considerations. This article provides a comprehensive summary of regulatory and research efforts supported by CDER in the area of drug products containing nanomaterials and other activities supporting the development of this emerging technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Tyner KM, Zou P, Yang X, Zhang H, Cruz CN, Lee SL. Product quality for nanomaterials: current U.S. experience and perspective. Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology. 2015;7(5):640–54.

  2. D'Mello, S. R., Cruz, C.N., Chen, M.L., Kapoor, M., Lee, S.L., Tyner, K.M., The evolving landscape of drug products containing nanomaterials in the U.S. Nature Nanotechnology, 2017.

  3. Cruz CN, Tyner KM, Velazquez L, Hyams KC, Jacobs A, Shaw AB, Jiang W, Lionberger R, Hinderling P, Kong Y, Brown PC, Ghosh T, Strasinger C, Suarez-Sharp S, Henry D, Van Uitert M, Sadrieh N, Morefield E. CDER risk assessment exercise to evaluate potential risks from the use of nanomaterials in drug products. AAPS J. 2013;15(3):623–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. FDA, U., Q9 Quality Risk Management. 2006.

  5. FDA, U., Content and format of investigational new drug applications (INDs) for phase 1 studies of drugs, including well-characterized, therapeutic biotechnology-derived products. 1995.

  6. FDA, U., Guidance for industry. Applications covered by section 505(b)(2). 1999.

  7. FDA, U., Guidance for industry. Submission of summary bioequivalence data for ANDAs. 2011.

  8. Bartlett JA, Brewster M, Brown P, Cabral-Lilly D, Cruz CN, David R, Eickhoff WM, Haubenreisser S, Jacobs A, Malinoski F, Morefield E, Nalubola R, Prud'homme RK, Sadrieh N, Sayes CM, Shahbazian H, Subbarao N, Tamarkin L, Tyner K, Uppoor R, Whittaker-Caulk M, Zamboni W. Summary report of PQRI workshop on nanomaterial in drug products: current experience and management of potential risks. AAPS J. 2015;17(1):44–64.

    Article  CAS  PubMed  Google Scholar 

  9. FDA, U., FDA_Office_for_Policy_Response_to_the_International_Center_for_Technology_Assessment_Partial_Petition_Approval_Denial. 2012.

  10. Tyner KM, Wokovich AM, Doub WH, Buhse LF, Sung LP, Watson SS, Sadrieh N. Comparing methods for detecting and characterizing metal oxide nanoparticles in unmodified commercial sunscreens. Nanomedicine. 2009;4(2):145–59.

    Article  CAS  PubMed  Google Scholar 

  11. Tyner KM, Wokovich AM, Godar DE, Doub WH, Sadrieh N. The state of nano-sized titanium dioxide (TiO2) may affect sunscreen performance. Int J Cosmet Sci. 2011;33(3):234–44.

    Article  CAS  PubMed  Google Scholar 

  12. Wokovich A, Tyner K, Doub W, Sadrieh N, Buhse LF. Particle size determination of sunscreens formulated with various forms of titanium dioxide. Drug Dev Ind Pharm. 2009;35(10):1180–9.

    Article  CAS  PubMed  Google Scholar 

  13. Sadrieh N, Wokovich AM, Gopee NV, Zheng J, Haines D, Parmiter D, Siitonen PH, Cozart CR, Patri AK, McNeil SE, Howard PC, Doub WH, Buhse LF. Lack of significant dermal penetration of titanium dioxide from sunscreen formulations containing nano- and submicron-size TiO2 particles. Toxicological sciences : an official journal of the Society of Toxicology. 2010;115(1):156–66.

    Article  CAS  Google Scholar 

  14. Patri A, Umbreit T, Zheng J, Nagashima K, Goering P, Francke-Carroll S, Gordon E, Weaver J, Miller T, Sadrieh N, McNeil S, Stratmeyer M. Energy dispersive X-ray analysis of titanium dioxide nanoparticle distribution after intravenous and subcutaneous injection in mice. Journal of applied toxicology : JAT. 2009;29(8):662–72.

    Article  CAS  PubMed  Google Scholar 

  15. Umbreit TH, Francke-Carroll S, Weaver JL, Miller TJ, Goering PL, Sadrieh N, Stratmeyer ME. Tissue distribution and histopathological effects of titanium dioxide nanoparticles after intravenous or subcutaneous injection in mice. Journal of applied toxicology: JAT. 2012;32(5):350–7.

    Article  CAS  PubMed  Google Scholar 

  16. Longmire M, Choyke PL, Kobayashi H. Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats. Nanomedicine. 2008;3(5):703–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yuan F, Dellian M, Fukumura D, Leunig M, Berk DA, Torchilin VP, Jain RK. Vascular permeability in a human tumor xenograft: molecular size dependence and cutoff size. Cancer Res. 1995;55(17):3752–6.

    CAS  PubMed  Google Scholar 

  18. Heintzenberg J. Properties of the log-normal particle size distribution. Aerosol Sci Technol. 1994;21(1):46–8.

    Article  Google Scholar 

  19. Smith JE, Jordan ML. Mathematical and graphical interpretation of the log-normal law for particle size distribution analysis. J Colloid Sci. 1964;19(6):549–59.

    Article  Google Scholar 

  20. Awotwe-Otoo D, Zidan AS, Rahman Z, Habib MJ. Evaluation of anticancer drug-loaded nanoparticle characteristics by nondestructive methodologies. AAPS PharmSciTech. 2012;13(2):611–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shah KB, Patel PG, Khairuzzaman A, Bellantone RA. An improved method for the characterization of supersaturation and precipitation of poorly soluble drugs using pulsatile microdialysis (PMD). Int J Pharm. 2014;468(1–2):64–74.

    Article  CAS  PubMed  Google Scholar 

  22. Kumar S, Jog R, Shen J, Zolnik B, Sadrieh N, Burgess DJ. Formulation and performance of danazol nano-crystalline suspensions and spray dried powders. Pharm Res. 2015;32(5):1694–703.

    Article  CAS  PubMed  Google Scholar 

  23. Kumar S, Jog R, Shen J, Zolnik B, Sadrieh N, Burgess DJ. In vitro and in vivo performance of different sized spray-dried crystalline itraconazole. J Pharm Sci. 2015;104(9):3018–28.

    Article  CAS  PubMed  Google Scholar 

  24. Shah RB, Yang Y, Khan MA, Faustino PJ. Molecular weight determination for colloidal iron by Taguchi optimized validated gel permeation chromatography. Int J Pharm. 2008;353(1–2):21–7.

    Article  CAS  PubMed  Google Scholar 

  25. Yang Y, Shah RB, Faustino PJ, Raw A, Yu LX, Khan MA. Thermodynamic stability assessment of a colloidal iron drug product: sodium ferric gluconate. J Pharm Sci. 2010;99(1):142–53.

    Article  CAS  PubMed  Google Scholar 

  26. Shah RB, Yang Y, Khan MA, Raw A, Yu LX, Faustino PJ. Pharmaceutical characterization and thermodynamic stability assessment of a colloidal iron drug product: iron sucrose. Int J Pharm. 2014;464(1–2):46–52.

    Article  CAS  PubMed  Google Scholar 

  27. Papahadjopoulos D, Allen TM, Gabizon A, Mayhew E, Matthay K, Huang SK, Lee KD, Woodle MC, Lasic DD, Redemann C. Sterically stabilized liposomes: improvements in pharmacokinetics and antitumor therapeutic efficacy. Proc Natl Acad Sci. 1991;88(24):11460–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yan W, Huang L. The effects of salt on the physicochemical properties and immunogenicity of protein based vaccine formulated in cationic liposome. Int J Pharm. 2009;368(1–2):56–62.

    Article  CAS  PubMed  Google Scholar 

  29. Zhang C, Tang N, Liu X, Liang W, Xu W, Torchilin VP. siRNA-containing liposomes modified with polyarginine effectively silence the targeted gene. Journal of controlled release : official journal of the Controlled Release Society. 2006;112(2):229–39.

    Article  CAS  Google Scholar 

  30. Xu X, Khan MA, Burgess DJ. A quality by design (QbD) case study on liposomes containing hydrophilic API: I. Formulation, processing design and risk assessment. Int J Pharm. 2011;419(1–2):52–9.

    Article  CAS  PubMed  Google Scholar 

  31. Xu X, Costa AP, Khan MA, Burgess DJ. Application of quality by design to formulation and processing of protein liposomes. Int J Pharm. 2012;434(1–2):349–59.

    Article  CAS  PubMed  Google Scholar 

  32. Vogt N. Quality by design: managing research and development. Chemom Intell Lab Syst. 1992;14(1–3):93–101.

    Article  CAS  Google Scholar 

  33. Wu H, Khan M, Hussain AS. Process control perspective for process analytical technology: integration of chemical engineering practice into semiconductor and pharmaceutical industries. Chem Eng Comm. 2007;194(6):760–79.

    Article  CAS  Google Scholar 

  34. Xu X, Khan MA, Burgess DJ. A quality by design (QbD) case study on liposomes containing hydrophilic API: II. Screening of critical variables, and establishment of design space at laboratory scale. Int J Pharm. 2012;423(2):543–53.

    Article  CAS  PubMed  Google Scholar 

  35. Xu X, Costa A, Burgess DJ. Protein encapsulation in unilamellar liposomes: high encapsulation efficiency and a novel technique to assess lipid-protein interaction. Pharm Res. 2012;29:1919–31.

    Article  CAS  PubMed  Google Scholar 

  36. Costa AP, Xu X, Burgess DJ. Langmuir balance investigation of superoxide dismutase interactions with mixed-lipid monolayers. Langmuir. 2012;28(26):10050–6.

    Article  CAS  PubMed  Google Scholar 

  37. Costa, A. P.; Xu, X.; Burgess, D. J., Freeze-anneal-thaw cycling of unilamellar liposomes: effect on encapsulation efficiency. Pharmaceutical Research 2013.

  38. Zidan AS, Sammour OA, Hammad MA, Megrab NA, Habib MJ, Khan MA. Quality by design: understanding the formulation variables of a cyclosporine A self-nanoemulsified drug delivery systems by Box-Behnken design and desirability function. Int J Pharm. 2007;332(1–2):55–63.

    Article  CAS  PubMed  Google Scholar 

  39. Shah RB, Zidan AS, Funck T, Tawakkul MA, Nguyenpho A, Khan MA. Quality by design: characterization of self-nano-emulsified drug delivery systems (SNEDDs) using ultrasonic resonator technology. Int J Pharm. 2007;341(1–2):189–94.

    Article  CAS  PubMed  Google Scholar 

  40. Zidan AS, Sammour OA, Hammad MA, Megrab NA, Habib MJ, Khan MA. Quality by design: understanding the product variability of a self-nanoemulsified drug delivery system of cyclosporine A. J Pharm Sci. 2007;96(9):2409–23.

    Article  CAS  PubMed  Google Scholar 

  41. Rahman Z, Xu X, Katragadda U, Krishnaiah YS, Yu L, Khan MA. Quality by design approach for understanding the critical quality attributes of cyclosporine ophthalmic emulsion. Mol Pharm. 2014;11(3):787–99.

    Article  CAS  PubMed  Google Scholar 

  42. Keene AM, Tyner KM. Analytical characterization of gold nanoparticle primary particles, aggregates, agglomerates, and agglomerated aggregates. J Nanopart Res. 2011;13(8):3465–81.

    Article  CAS  Google Scholar 

  43. Keene AM, Peters D, Rouse R, Stewart S, Rosen ET, Tyner KM. Tissue and cellular distribution of gold nanoparticles varies based on aggregation/agglomeration status. Nanomedicine. 2012;7(2):199–209.

    Article  CAS  PubMed  Google Scholar 

  44. Bancos S, Stevens DL, Tyner KM. Effect of silica and gold nanoparticles on macrophage proliferation, activation markers, cytokine production, and phagocytosis in vitro. Int J Nanomedicine. 2015;10:183–206.

    CAS  PubMed  Google Scholar 

  45. Bancos S, Tsai DH, Hackley V, Weaver JL, Tyner KM. Evaluation of viability and proliferation profiles on macrophages treated with silica nanoparticles in vitro via plate-based, flow cytometry, and coulter counter assays. ISRN Nanotechnology. 2012;2012:1–11.

    Article  Google Scholar 

  46. Li SD, Huang L. Pharmacokinetics and biodistribution of nanoparticles. Mol Pharm. 2008;5(4):496–504.

    Article  CAS  PubMed  Google Scholar 

  47. Drummond DC, Noble CO, Hayes ME, Park JW, Kirpotin DB. Pharmacokinetics and in vivo drug release rates in liposomal nanocarrier development. J Pharm Sci. 2008;97(11):4696–740.

    Article  CAS  PubMed  Google Scholar 

  48. Li M, Zou P., Tyner KM, Lee SL, Physiologically based pharmacokinetic (PBPK) modeling of pharmaceutical nanoparticles. AAPSJ 2016.

  49. Christopher R Beekman, MM., Adil Mohammad, Adarsh Gandhi, Dajun Sun, Wenlei Jiang, Robert Lionberger, Rodney Rouse, Vikram Patel., Determining the bio-distribution of colloidal iron drug products in rats by inductively coupled plasma mass spectrometry (ICP-MS). NYAS workshop, Equivalence of complex drug products: Scientific and regulatory challenges (Nov 9, 2016) 2016.

  50. Wu M, Sun D, Tyner K, Jiang W, Rouse R. Comparative in vitro cellular uptake study on reference and generic sodium ferric gluconate in mononuclear phagocyte systems. 2016 NYAS Workshop, Equivalence of complex drug products; Scientific and Regulatory challenges (Nov 9, 2016) 2016.

  51. Wu Y, Petrochenko P, Chen L, Wong SY, Absar M, Choi S, Zheng J. Core size determination and structural characterization of intravenous iron complexes by cryogenic transmission electron microscopy. Int J Pharm. 2016;505(1–2):167–74.

    Article  CAS  PubMed  Google Scholar 

  52. Mohammad S. Absar, N. Ziaee, Lynn Chen, Stephanie Choi, Jiwen Zheng, Particle size characterization of iron sucrose colloids to study equivalence between test and reference products. AAPS Orlando, FL (October 25–29, 2015) (Abstract) T2250 2015.

  53. Fugit KD, Xiang TX, Choi du H, Kangarlou S, Csuhai E, Bummer PM, Anderson BD. Mechanistic model and analysis of doxorubicin release from liposomal formulations. Journal of controlled release : official journal of the Controlled Release Society. 2015;217:82–91.

    Article  CAS  Google Scholar 

  54. Csuhai E, Kangarlou S, Xiang TX, Ponta A, Bummer P, Choi D, Anderson BD. Determination of key parameters for a mechanism-based model to predict doxorubicin release from actively loaded liposomes. J Pharm Sci. 2015;104(3):1087–98.

    Article  CAS  PubMed  Google Scholar 

  55. Yuan W, Kuai R, Dai Z, Yuan Y, Zheng N, Jiang W, Noble C, Hayes M, Szoka FC, Schwendeman A. Development of a flow-through USP-4 apparatus drug release assay to evaluate doxorubicin liposomes. AAPS J. 2017;19(1):150–60.

    Article  CAS  PubMed  Google Scholar 

  56. Pai, A. B.; Meyer, D. E.; Bales, B. C.; Cotero, V. E.; Pai, M. P.; Zheng, N.; Jiang, W., Performance of redox active and chelatable iron assays to determine labile iron release from intravenous iron formulations. Clin Transl Sci 2017.

  57. FDA, U., Draft guidance on cyclosporine. 2016.

  58. Yong, W., Petrochenko, P., Absar, M., Wong, S.Y., Choi, S., Zheng, J., Characterization of the globule size distribution of cyclosporine ophthalmic emulsion by cryogenic electron microscopy.. 2016 Microscopy & Microanlaysis Annual Meeting 2016.

Download references

Acknowledgements

Edward Bashaw, Paul C. Brown, Scott Furness, Tapash Ghosh, Don Henry, Peter Hinderling, Kenneth C. Hyams, Abigail Jacobs, Yoon Kong, Robert Lionberger, Elaine Morefield, Narayan Nair, Marie Angeline O’Shea, Nakissa Sadrieh, Arthur B. Shaw, Arlene Solbeck, Caroline Strasinger, Sandra Suarez-Sharp, Reynold Tan, Douglas Throckmorton, Maat Van Uitert, Lydia Velazquez, Keith Webber, and Helen Winkle.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Celia N. Cruz.

Ethics declarations

The findings and conclusions in this article have not been formally disseminated by the Food and Drug Administration and should not be construed to represent any Agency determination or policy. The mention of commercial products, their sources, or their use in connection with material reported herein is not to be construed as either an actual or implied endorsement of such products by the Department of Health and Human Services.

Conflict of Interest

All authors are employed by the US Food and Drug Administration. The authors do not declare any other conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tyner, K.M., Zheng, N., Choi, S. et al. How Has CDER Prepared for the Nano Revolution? A Review of Risk Assessment, Regulatory Research, and Guidance Activities. AAPS J 19, 1071–1083 (2017). https://doi.org/10.1208/s12248-017-0084-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-017-0084-6

KEY WORDS

Navigation