Skip to main content
Log in

Advantageous Solubility-Permeability Interplay When Using Amorphous Solid Dispersion (ASD) Formulation for the BCS Class IV P-gp Substrate Rifaximin: Simultaneous Increase of Both the Solubility and the Permeability

  • Research Article
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Rifaximin is a BCS class IV (low-solubility, low-permeability) drug and also a P-gp substrate. The aims of this work were to assess the efficiency of different rifaximin amorphous solid dispersion (ASDs) formulations in achieving and maintaining supersaturation and to investigate the consequent solubility-permeability interplay. Spray-dried rifaximin ASDs were prepared with different hydrophilic polymers and their ability to achieve and maintain supersaturation was assessed. Then, rifaximin’s apparent intestinal permeability was investigated as a function of increasing supersaturation both in vitro using the parallel artificial membrane permeability assay (PAMPA) and in vivo using the single-pass rat intestinal perfusion (SPIP) model. The efficiency of the different ASDs to achieve and maintain supersaturation of rifaximin was found to be highly polymer dependent, and the copovidone/HPC-SL formulation was found to be superior to the other two, allowing supersaturation of 200× that of the crystalline solubility for 20 h. In vitro, rifaximin flux was increased and the apparent permeability was constant as a function of increasing supersaturation level. In vivo, on the other hand, absorption rate coefficient (k a) was first constant as a function of increasing supersaturation, but at 250×, the crystalline solubility k a was doubled, similar to the k a in the presence of the strong P-gp inhibitor GF120918. In conclusion, a new and favorable nature of solubility-permeability interplay was revealed in this work: delivering high supersaturation level of the BCS class IV drug rifaximin via ASD, thereby saturating the drugs’ P-gp-mediated efflux transport, led to the favorable unique win-win situation, where both the solubility and the permeability increased simultaneously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Dahan A, Wolk O, Kim YH, Ramachandran C, Crippen GM, Takagi T, et al. Purely in silico BCS classification: science based quality standards for the world’s drugs. Mol Pharm. 2013;10:4378–90.

    Article  CAS  PubMed  Google Scholar 

  2. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 2001;46:3–26.

    Article  CAS  PubMed  Google Scholar 

  3. Dahan A, Beig A, Lindley D, Miller JM. The solubility–permeability interplay and oral drug formulation design: two heads are better than one. Adv Drug Deliv Rev. 2016;101:99–107.

    Article  CAS  PubMed  Google Scholar 

  4. Dahan A, Miller J. The solubility–permeability interplay and its implications in formulation design and development for poorly soluble drugs. AAPS J. 2012;14:244–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Amidon GL, Lennernas H, Shah VP, Crison JR. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res. 1995;12:413.

    Article  CAS  PubMed  Google Scholar 

  6. Dahan A, Miller J, Amidon G. Prediction of solubility and permeability class membership: provisional BCS classification of the world’s top oral drugs. AAPS J. 2009;11:740–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lobenberg R, Amidon GL. Modern bioavailability, bioequivalence and biopharmaceutics classification system. New scientific approaches to international regulatory standards. Eur J Pharm Biopharm. 2000;50:3–12.

    Article  CAS  PubMed  Google Scholar 

  8. Beig A, Agbaria R, Dahan A. The use of captisol (SBE7-β-CD) in oral solubility-enabling formulations: comparison to HPβCD and the solubility–permeability interplay. Eur J Pharm Sci. 2015;77:73–8.

    Article  CAS  PubMed  Google Scholar 

  9. Dahan A, Miller JM, Hoffman A, Amidon GE, Amidon GL. The solubility-permeability interplay in using cyclodextrins as pharmaceutical solubilizers: mechanistic modeling and application to progesterone. J Pharm Sci. 2010;99:2739–49.

    Article  CAS  PubMed  Google Scholar 

  10. Miller JM, Dahan A. Predicting the solubility–permeability interplay when using cyclodextrins in solubility-enabling formulations: model validation. Int J Pharm. 2012;430:388–91.

    Article  CAS  PubMed  Google Scholar 

  11. Miller JM, Beig A, Krieg BJ, Carr RA, Borchardt TB, Amidon GE, et al. The solubility-permeability interplay: mechanistic modeling and predictive application of the impact of micellar solubilization on intestinal permeation. Mol Pharm. 2011;8:1848–56.

    Article  CAS  PubMed  Google Scholar 

  12. Beig A, Miller JM, Dahan A. Accounting for the solubility–permeability interplay in oral formulation development for poor water solubility drugs: the effect of PEG-400 on carbamazepine absorption. Eur J Pharm Biopharm. 2012;81:386–91.

    Article  CAS  PubMed  Google Scholar 

  13. Beig A, Miller JM, Lindley D, Dahan A. Striking the optimal solubility-permeability balance in oral formulation development for lipophilic drugs: maximizing carbamazepine blood levels. Mol Pharm. 2017;14:319–27.

    Article  CAS  PubMed  Google Scholar 

  14. Miller JM, Beig A, Carr RA, Webster GK, Dahan A. The solubility–permeability interplay when using cosolvents for solubilization: revising the way we use solubility-enabling formulations. Mol Pharm. 2012;9:581–90.

    Article  CAS  PubMed  Google Scholar 

  15. Beig A, Lindley D, Miller JM, Agbaria R, Dahan A. Hydrotropic solubilization of lipophilic drugs for oral delivery: the effects of urea and nicotinamide on carbamazepine solubility–permeability interplay. Front Pharmacol. 2016;7:379.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Brouwers J, Brewster ME, Augustijns P. Supersaturating drug delivery systems: the answer to solubility-limited oral bioavailability? J Pharm Sci. 2009;98:2549–72.

    Article  CAS  PubMed  Google Scholar 

  17. Kawabata Y, Wada K, Nakatani M, Yamada S, Onoue S. Formulation design for poorly water-soluble drugs based on biopharmaceutics classification system: basic approaches and practical applications. Int J Pharm. 2011;420:1–10.

    Article  CAS  PubMed  Google Scholar 

  18. van Hoogevest P, Liu X, Fahr A. Drug delivery strategies for poorly water-soluble drugs: the industrial perspective. Expert Opin Drug Deliv. 2011;8:1481–500.

    Article  PubMed  Google Scholar 

  19. Bhugra C, Pikal MJ. Role of thermodynamic, molecular, and kinetic factors in crystallization from the amorphous state. J Pharm Sci. 2008;97:1329–49.

    Article  CAS  PubMed  Google Scholar 

  20. Murdande SB, Pikal MJ, Shanker RM, Bogner RH. Solubility advantage of amorphous pharmaceuticals: I. A thermodynamic analysis. J Pharm Sci. 2010;99:1254–64.

    Article  CAS  PubMed  Google Scholar 

  21. Vasconcelos T, Sarmento B, Costa P. Solid dispersions as strategy to improve oral bioavailability of poor water soluble drugs. Drug Discov Today. 2007;12:1068–75.

    Article  CAS  PubMed  Google Scholar 

  22. Beig A, Miller JM, Lindley D, Carr RA, Zocharski P, Agbaria R, et al. Head-to-head comparison of different solubility-enabling formulations of etoposide and their consequent solubility-permeability interplay. J Pharm Sci. 2015;104:2941–7.

    Article  CAS  PubMed  Google Scholar 

  23. Dahan A, Beig A, Ioffe-Dahan V, Agbaria R, Miller J. The twofold advantage of the amorphous form as an oral drug delivery practice for lipophilic compounds: increased apparent solubility and drug flux through the intestinal membrane. AAPS J. 2013;15:347–53.

    Article  CAS  PubMed  Google Scholar 

  24. Miller JM, Beig A, Carr RA, Spence JK, Dahan A. A win–win solution in oral delivery of lipophilic drugs: supersaturation via amorphous solid dispersions increases apparent solubility without sacrifice of intestinal membrane permeability. Mol Pharm. 2012;9:2009–16.

    Article  CAS  PubMed  Google Scholar 

  25. Adachi JA, DuPont HL. Rifaximin: a novel nonabsorbed rifamycin for gastrointestinal disorders. Clin Infect Dis. 2006;42:541–7.

    Article  CAS  PubMed  Google Scholar 

  26. Cottreau J, Baker SF, DuPont HL, Garey KW. Rifaximin: a nonsystemic rifamycin antibiotic for gastrointestinal infections. Expert Rev Anti Infect Ther. 2010;8:747–60.

    Article  CAS  PubMed  Google Scholar 

  27. Benet LZ, Broccatelli F, Oprea TI. BDDCS applied to over 900 drugs. AAPS J. 2011;13:519–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pham-The H, Garrigues T, Bermejo M, González-Álvarez I, Monteagudo MC, Cabrera-Pérez MÁ. Provisional classification and in silico study of biopharmaceutical system based on Caco-2 cell permeability and dose number. Mol Pharm. 2013;10:2445–61.

    Article  CAS  PubMed  Google Scholar 

  29. Wolk O, Agbaria R, Dahan A. Provisional in-silico biopharmaceutics classification (BCS) to guide oral drug product development. Drug Des Devel Ther. 2014;8:1563–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Fairstein M, Swissa R, Dahan A. Regional-dependent intestinal permeability and BCS classification: elucidation of pH-related complexity in rats using pseudoephedrine. AAPS J. 2013;15:589–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Beig A, Agbaria R, Dahan A. Oral delivery of lipophilic drugs: the tradeoff between solubility increase and permeability decrease when using cyclodextrin-based formulations. PLoS One. 2013;8:e68237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zur M, Hanson AS, Dahan A. The complexity of intestinal permeability: assigning the correct BCS classification through careful data interpretation. Eur J Pharm Sci. 2014;61:11–7.

    Article  CAS  PubMed  Google Scholar 

  33. Zur M, Cohen N, Agbaria R, Dahan A. The biopharmaceutics of successful controlled release drug product: segmental-dependent permeability of glipizide vs. metoprolol throughout the intestinal tract. Int J Pharm. 2015;489:304–10.

    Article  CAS  PubMed  Google Scholar 

  34. Zur M, Gasparini M, Wolk O, Amidon GL, Dahan A. The low/high BCS permeability class boundary: physicochemical comparison of metoprolol and labetalol. Mol Pharm. 2014;11:1707–14.

    Article  CAS  PubMed  Google Scholar 

  35. Lozoya-Agullo I, Zur M, Beig A, Fine N, Cohen Y, González-Álvarez M, et al. Segmental-dependent permeability throughout the small intestine following oral drug administration: single-pass vs. Doluisio approach to in-situ rat perfusion. Int J Pharm. 2016;515:201–8.

    Article  CAS  PubMed  Google Scholar 

  36. Lozoya-Agullo I, Zur M, Wolk O, Beig A, González-Álvarez I, González-Álvarez M, et al. In-situ intestinal rat perfusions for human Fabs prediction and BCS permeability class determination: investigation of the single-pass vs. the Doluisio experimental approaches. Int J Pharm. 2015;480:1–7.

    Article  CAS  PubMed  Google Scholar 

  37. Beig A, Dahan A. Quantification of carbamazepine and its 10,11-epoxide metabolite in rat plasma by UPLC-UV and application to pharmacokinetic study. Biomed Chromatogr. 2014;28:934–8.

    Article  CAS  PubMed  Google Scholar 

  38. Dahan A, Amidon GL. Segmental dependent transport of low permeability compounds along the small intestine due to P-gp: the role of efflux transport in the oral absorption of BCS class III drugs. Mol Pharm. 2009;6:19–28.

    Article  CAS  PubMed  Google Scholar 

  39. Dahan A, Amidon GL. Grapefruit juice and its constituents augment colchicine intestinal absorption: potential hazardous interaction and the role of p-glycoprotein. Pharm Res. 2009;26:883–92.

    Article  CAS  PubMed  Google Scholar 

  40. Dahan A, Sabit H, Amidon GL. Multiple efflux pumps are involved in the transepithelial transport of colchicine: combined effect of P-gp and MRP2 leads to decreased intestinal absorption throughout the entire small intestine. Drug Metab Dispos. 2009;37:2028–36.

    Article  CAS  PubMed  Google Scholar 

  41. Dahan A, Sabit H, Amidon GL. The H2 receptor antagonist nizatidine is a P-glycoprotein substrate: characterization of its intestinal epithelial cell efflux transport. AAPS J. 2009;11:205–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Amidon GE, Higuchi WI, Ho NFH. Theoretical and experimental studies of transport of micelle-solubilized solutes. J Pharm Sci. 1982;71:77–84.

    Article  CAS  PubMed  Google Scholar 

  43. Beig A, Miller JM, Dahan A. The interaction of nifedipine with selected cyclodextrins and the subsequent solubility–permeability trade-off. Eur J Pharm Biopharm. 2013;85:1293–9.

    Article  CAS  PubMed  Google Scholar 

  44. Bermejo MV, Pérez-Varona AT, Segura-Bono MJ, Martín-Villodre A, Plá-Delfina JM, Garrigues TM. Compared effects of synthetic and natural bile acid surfactants on xenobiotic absorption I. Studies with polysorbate and taurocholate in rat colon. Int J Pharm. 1991;69:221–31.

    Article  CAS  Google Scholar 

  45. Frank KJ, Westedt U, Rosenblatt KM, Hölig P, Rosenberg J, Mägerlein M, et al. Impact of FaSSIF on the solubility and dissolution-/permeation rate of a poorly water-soluble compound. Eur J Pharm Sci. 2012;47:16–20.

    Article  CAS  PubMed  Google Scholar 

  46. Feeney OM, Crum MF, McEvoy CL, Trevaskis NL, Williams HD, Pouton CW, et al. 50 years of oral lipid-based formulations: provenance, progress and future perspectives. Adv Drug Deliv Rev. 2016;101:167–94.

    Article  CAS  PubMed  Google Scholar 

  47. Frank KJ, Westedt U, Rosenblatt KM, Hölig P, Rosenberg J, Mägerlein M, et al. What is the mechanism behind increased permeation rate of a poorly soluble drug from aqueous dispersions of an amorphous solid dispersion? J Pharm Sci. 2014;103:1779–86.

    Article  CAS  PubMed  Google Scholar 

  48. Grant D, Higuchi T. Activities of solutes, selection of standard state, and Henry’s law constants. In: Weissberger A, editor. Solubility behavior of organic compounds. New York: Wiley; 1990. p. 89–133.

    Google Scholar 

  49. Grant D, Higuchi T. Solubility in and partitioning into water. In: Weissberger A, editor. Solubility behavior of organic compounds. New York: Wiley; 1990. p. 355–98.

    Google Scholar 

  50. Bajaj JS, Riggio O. Drug therapy: rifaximin. Hepatology. 2010;52:1484–8.

    Article  CAS  PubMed  Google Scholar 

  51. Huang DB, DuPont HL. Rifaximin—a novel antimicrobial for enteric infections. J Infect. 2005;50:97–106.

    Article  PubMed  Google Scholar 

  52. Blandizzi C, Viscomi G, Scarpignato C. Impact of crystal polymorphism on the systemic bioavailability of rifaximin, an antibiotic acting locally in the gastrointestinal tract, in healthy volunteers. Drug Des Devel Ther. 2014;9:1–11.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by a research grant from AbbVie Inc. This work is part of Avital Beig’s Ph.D. dissertation. The authors thank Dr Philip Zocharski and Dr Xiaochun Lou for their assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arik Dahan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beig, A., Fine-Shamir, N., Lindley, D. et al. Advantageous Solubility-Permeability Interplay When Using Amorphous Solid Dispersion (ASD) Formulation for the BCS Class IV P-gp Substrate Rifaximin: Simultaneous Increase of Both the Solubility and the Permeability. AAPS J 19, 806–813 (2017). https://doi.org/10.1208/s12248-017-0052-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-017-0052-1

KEY WORDS

Navigation