We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Skip to main content
Log in

Investigation of Polymer-Surfactant and Polymer-Drug-Surfactant Miscibility for Solid Dispersion

  • Research Article
  • Theme: Next Generation Formulation Design: Innovations in Material Selection and Functionality
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

In a solid dispersion (SD), the drug is generally dispersed either molecularly or in the amorphous state in polymeric carriers, and the addition of a surfactant is often important to ensure drug release from such a system. The objective of this investigation was to screen systematically polymer-surfactant and polymer-drug-surfactant miscibility by using the film casting method. Miscibility of the crystalline solid surfactant, poloxamer 188, with two commonly used amorphous polymeric carriers, Soluplus® and HPMCAS, was first studied. Then, polymer-drug-surfactant miscibility was determined using itraconazole as the model drug, and ternary phase diagrams were constructed. The casted films were examined by DSC, PXRD and polarized light microscopy for any crystallization or phase separation of surfactant, drug or both in freshly prepared films and after exposure to 40°C/75% RH for 7, 14, and 30 days. The miscibility of poloxamer 188 with Soluplus® was <10% w/w, while its miscibility with HPMCAS was at least 30% w/w. Although itraconazole by itself was miscible with Soluplus® up to 40% w/w, the presence of poloxamer drastically reduced its miscibility to <10%. In contrast, poloxamer 188 had minimal impact on HPMCAS-itraconazole miscibility. For example, the phase diagram showed amorphous miscibility of HPMCAS, itraconazole, and poloxamer 188 at 54, 23, and 23% w/w, respectively, even after exposure to 40°C/75% RH for 1 month. Thus, a relatively simple and practical method of screening miscibility of different components and ultimately physical stability of SD is provided. The results also identify the HPMCAS-poloxamer 188 mixture as an optimal surface-active carrier system for SD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Williams HD, Trevaskis NL, Charman SA, Shanker RM, Charman WN, Pouton CW, et al. Strategies to address low drug solubility in discovery and development. Pharmacol Rev. 2013;65(1):315–499.

    Article  PubMed  Google Scholar 

  2. Chiou WL, Riegelman S. Pharmaceutical applications of solid dispersion systems. J Pharm Sci. 1971;60(9):1281–302.

    Article  CAS  PubMed  Google Scholar 

  3. Serajuddin ATM. Solid dispersion of poorly water-soluble drugs: early promises, subsequent problems, and recent breakthroughs. J Pharm Sci. 1999;88(10):1058–66.

    Article  CAS  PubMed  Google Scholar 

  4. Leuner C, Dressman J. Improving drug solubility for oral delivery using solid dispersions. Eur J Pharm Biopharm. 2000;50(1):47–60.

    Article  CAS  PubMed  Google Scholar 

  5. Tong WQ, Vasanthavada M, Serajuddin ATM. Development of solid dispersion for poorly water-soluble drugs. Water-Insoluble Drug Formulation, Second Edition: CRC Press; 2008. p. 499-529

  6. Baghel S, Cathcart H, O’Reilly NJ. Polymeric amorphous solid dispersions: a review of amorphization, crystallization, stabilization, solid-state characterization, and aqueous solubilization of biopharmaceutical classification system class II drugs. J Pharm Sci.In Press

  7. Breitenbach J. Melt extrusion: from process to drug delivery technology. Eur J Pharm Biopharm. 2002;54(2):107–17.

    Article  CAS  PubMed  Google Scholar 

  8. Shah S, Maddineni S, Lu J, Repka MA. Melt extrusion with poorly soluble drugs. Int J Pharm. 2013;453(1):233–52.

    Article  CAS  PubMed  Google Scholar 

  9. Lakshman PJ. Formulation, bioavailability, and manufacturing process enhancement: novel applications of melt extrusion in enabling product development. In: Repka AM, Langley N, DiNunzio J, editors. Melt extrusion: materials, technology and drug product design. New York, NY: Springer New York; 2013. p. 329–62.

    Chapter  Google Scholar 

  10. Forster A, Hempenstall J, Tucker I, Rades T. Selection of excipients for melt extrusion with two poorly water-soluble drugs by solubility parameter calculation and thermal analysis. Int J Pharm. 2001;226(1–2):147–61.

    Article  CAS  PubMed  Google Scholar 

  11. Marsac PJ, Li T, Taylor LS. Estimation of drug–polymer miscibility and solubility in amorphous solid dispersions using experimentally determined interaction parameters. Pharm Res. 2008;26(1):139–51.

    Article  PubMed  Google Scholar 

  12. Paudel A, Van Humbeeck J, Van den Mooter G. Theoretical and experimental investigation on the solid solubility and miscibility of naproxen in poly(vinylpyrrolidone). Mol Pharm. 2010;7(4):1133–48.

    Article  CAS  PubMed  Google Scholar 

  13. Hu Q, Wyttenbach N, Shiraki K, Choi SD. Miniaturized screening tools for polymer and process evaluation. In: Shah N, Sandhu H, Choi SD, Chokshi H, Malick WA, editors. Amorphous solid dispersions: theory and practice. New York, NY: Springer New York; 2014. p. 165–95.

    Google Scholar 

  14. Parikh T, Gupta SS, Meena AK, Vitez I, Mahajan N, Serajuddin ATM. Application of film-casting technique to investigate drug–polymer miscibility in solid dispersion and hot-melt extrudate. J Pharm Sci. 2015;104(7):2142–52.

    Article  CAS  PubMed  Google Scholar 

  15. Ilevbare GA, Taylor LS. Liquid–liquid phase separation in highly supersaturated aqueous solutions of poorly water-soluble drugs: implications for solubility enhancing formulations. Cryst Growth Des. 2013;13(4):1497–509.

    Article  CAS  Google Scholar 

  16. Serajuddin ATM, Sheen P-C, Augustine MA. Improved dissolution of a poorly water-soluble drug from solid dispersions in polyethylene glycol: polysorbate 80 mixtures. J Pharm Sci. 1990;79(5):463–4.

    Article  CAS  PubMed  Google Scholar 

  17. Ghebremeskel AN, Vemavarapu C, Lodaya M. Use of surfactants as plasticizers in preparing solid dispersions of poorly soluble API: selection of polymer–surfactant combinations using solubility parameters and testing the processability. Int J Pharm. 2007;328(2):119–29.

    Article  CAS  PubMed  Google Scholar 

  18. Sotthivirat S, McKelvey C, Moser J, Rege B, Xu W, Zhang D. Development of amorphous solid dispersion formulations of a poorly water-soluble drug, MK-0364. Int J Pharm. 2013;452(1–2):73–81.

    Article  CAS  PubMed  Google Scholar 

  19. Lang B, McGinity JW, Williams RO. Dissolution enhancement of itraconazole by hot-melt extrusion alone and the combination of hot-melt extrusion and rapid freezing—effect of formulation and processing variables. Mol Pharm. 2014;11(1):186–96.

    Article  CAS  PubMed  Google Scholar 

  20. Li B, Konecke S, Harich K, Wegiel L, Taylor LS, Edgar KJ. Solid dispersion of quercetin in cellulose derivative matrices influences both solubility and stability. Carbohydr Polym. 2013;92(2):2033–40.

    Article  CAS  PubMed  Google Scholar 

  21. Overhoff KA, McConville JT, Yang W, Johnston KP, Peters JI, Williams RO. Effect of stabilizer on the maximum degree and extent of supersaturation and oral absorption of tacrolimus made by ultra-rapid freezing. Pharm Res. 2007;25(1):167–75.

    Article  PubMed  Google Scholar 

  22. Mitra A, Fadda HM. Effect of surfactants, gastric emptying, and dosage form on supersaturation of dipyridamole in an in vitro model simulating the stomach and duodenum. Mol Pharm. 2014;11(8):2835–44.

    Article  CAS  PubMed  Google Scholar 

  23. Gao P, Akrami A, Alvarez F, Hu J, Li L, Ma C, et al. Characterization and optimization of AMG 517 supersaturatable self-emulsifying drug delivery system (S-SEDDS) for improved oral absorption. J Pharm Sci. 2009;98(2):516–28.

    Article  CAS  PubMed  Google Scholar 

  24. Serajuddin ATM, Sheen P-C, Mufson D, Bernstein DF, Augustine MA. Effect of vehicle amphiphilicity on the dissolution and bioavailability of a poorly water-soluble drug from solid dispersions. J Pharm Sci. 1988;77(5):414–7.

    Article  CAS  PubMed  Google Scholar 

  25. Joshi HN, Tejwani RW, Davidovich M, Sahasrabudhe VP, Jemal M, Bathala MS, et al. Bioavailability enhancement of a poorly water-soluble drug by solid dispersion in polyethylene glycol–polysorbate 80 mixture. Int J Pharm. 2004;269(1):251–8.

    Article  CAS  PubMed  Google Scholar 

  26. Vasanthavada M, Serajuddin ATM. Lipid-based self-emulsifying solid dispersions. Oral lipid-based formulations. Drugs and the Pharmaceutical Sciences: CRC Press; 2007. p. 149-83

  27. Crowley MM, Zhang F, Repka MA, Thumma S, Upadhye SB, Kumar Battu S, et al. Pharmaceutical applications of hot-melt extrusion: part I. Drug Dev Ind Pharm. 2007;33(9):909–26.

    Article  CAS  PubMed  Google Scholar 

  28. Gupta SS, Meena A, Parikh T, Serajuddin ATM. Investigation of thermal and viscoelastic properties of polymers relevant to hot melt extrusion, I: polyvinylpyrrolidone and related polymers. J Excipients Food Chem. 2014;5(1):32–45.

    Google Scholar 

  29. Meena A, Parikh T, Gupta SS, Serajuddin ATM. Investigation of thermal and viscoelastic properties of polymers relevant to hot melt extrusion, II: cellulosic polymers. J Excipients Food Chem. 2014;5(1):46–55.

    Google Scholar 

  30. Parikh T, Gupta SS, Meena A, Serajuddin ATM. Investigation of thermal and viscoelastic properties of polymers relevant to hot melt extrusion, III: polymethacrylates and polymethacrylic acid based polymers. J Excipients Food Chem. 2014;5(1):56–64.

    Google Scholar 

  31. Gupta SS, Solanki N, Serajuddin ATM. Investigation of thermal and viscoelastic properties of polymers relevant to hot melt extrusion, IV: Affinisol™ HPMC HME polymers. AAPS PharmSciTech. 2015:1-10.

  32. LaFountaine JS, Prasad LK, Brough C, Miller DA, McGinity JW, Williams RO. Thermal processing of pvp- and hpmc-based amorphous solid dispersions. AAPS PharmSciTech. 2015:1-13.

  33. Repka MA, Gerding TG, Repka SL, McGinity JW. Influence of plasticizers and drugs on the physical-mechanical properties of hydroxypropylcellulose films prepared by hot melt extrusion. Drug Dev Ind Pharm. 1999;25(5):625–33.

    Article  CAS  PubMed  Google Scholar 

  34. Maru SM, de Matas M, Kelly A, Paradkar A. Characterization of thermal and rheological properties of zidovidine, lamivudine and plasticizer blends with ethyl cellulose to assess their suitability for hot melt extrusion. Eur J Pharm Sci. 2011;44(4):471–8.

    Article  CAS  PubMed  Google Scholar 

  35. Verreck G. The influence of plasticizers in hot-melt extrusion. Hot-melt extrusion: pharmaceutical applications: John Wiley & Sons, Ltd; 2012. p. 93-112.

  36. Lakshman JP, Cao Y, Kowalski J, Serajuddin ATM. Application of melt extrusion in the development of a physically and chemically stable high-energy amorphous solid dispersion of a poorly water-soluble drug. Mol Pharm. 2008;5(6):994–1002.

    Article  CAS  PubMed  Google Scholar 

  37. Dannenfelser R-M, He H, Joshi Y, Bateman S, Serajuddin ATM. Development of clinical dosage forms for a poorly water soluble drug I: application of polyethylene glycol–polysorbate 80 solid dispersion carrier system. J Pharm Sci. 2004;93(5):1165–75.

    Article  CAS  PubMed  Google Scholar 

  38. Fule R, Meer T, Amin P, Dhamecha D, Ghadlinge S. Preparation and characterisation of lornoxicam solid dispersion systems using hot melt extrusion technique. J Pharm Invest. 2013;44(1):41–59.

    Article  Google Scholar 

  39. Fule R, Amin P. Development and evaluation of lafutidine solid dispersion via hot melt extrusion: investigating drug-polymer miscibility with advanced characterisation. Asian J Pharm Sci. 2014;9(2):92–106.

    Article  Google Scholar 

  40. Mosquera-Giraldo LI, Trasi NS, Taylor LS. Impact of surfactants on the crystal growth of amorphous celecoxib. Int J Pharm. 2014;461(1–2):251–7.

    Article  CAS  PubMed  Google Scholar 

  41. Medarević DP, Kleinebudde P, Djuriš J, Djurić Z, Ibrić S. Combined application of mixture experimental design and artificial neural networks in the solid dispersion development. Drug Dev Ind Pharm. 2016;42(3):389–402.

    Article  PubMed  Google Scholar 

  42. Medarević DP, Kachrimanis K, Mitrić M, Djuriš J, Djurić Z, Ibrić S. Dissolution rate enhancement and physicochemical characterization of carbamazepine-poloxamer solid dispersions. Pharm Dev Technol. 2016;21(3):268–76.

    Article  PubMed  Google Scholar 

  43. Kolter K, Karl M, Gryczke A. Hot-melt extrusion with BASF polymers: extrusion compendium. 2nd ed. Germany: BASF Corp; 2012. p. 113–6.

    Google Scholar 

  44. Chen Y, Zhang GGZ, Neilly J, Marsh K, Mawhinney D, Sanzgiri YD. Enhancing the bioavailability of ABT-963 using solid dispersion containing Pluronic F-68. Int J Pharm. 2004;286(1–2):69–80.

    Article  CAS  PubMed  Google Scholar 

  45. Liu D, Fei X, Wang S, Jiang T, Su D. Increasing solubility and dissolution rate of drugs via eutectic mixtures: itraconazole–poloxamer188 system. Asian J Pharm Sci. 2006;1(3-4):213–21.

    CAS  Google Scholar 

  46. Poloxamer. In: Rowe RC, Sheskey PJ, Cook WG, Fenton ME, editors. Handbook of pharmaceutical excipients. 7 ed: Pharmaceutical Press; 2012. p. 573-7

  47. Purohit HS, Taylor LS. Miscibility of itraconazole–hydroxypropyl methylcellulose blends: Insights with high resolution analytical methodologies. Mol Pharm. 2015;12(12):4542–53.

    Article  CAS  PubMed  Google Scholar 

  48. Qian F, Huang J, Zhu Q, Haddadin R, Gawel J, Garmise R, et al. Is a distinctive single Tg a reliable indicator for the homogeneity of amorphous solid dispersion? Int J Pharm. 2010;395(1–2):232–5.

    Article  CAS  PubMed  Google Scholar 

  49. Bhardwaj SP, Arora KK, Kwong E, Templeton A, Clas S-D, Suryanarayanan R. Mechanism of amorphous itraconazole stabilization in polymer solid dispersions: role of molecular mobility. Mol Pharm. 2014;11(11):4228–37.

    Article  CAS  PubMed  Google Scholar 

  50. Chen Y, Liu C, Chen Z, Su C, Hageman M, Hussain M, et al. Drug–polymer–water interaction and its implication for the dissolution performance of amorphous solid dispersions. Mol Pharm. 2015;12(2):576–89.

    Article  CAS  PubMed  Google Scholar 

  51. Parikh T, Sandhu HK, Talele TT, Serajuddin ATM. Characterization of solid dispersion of itraconazole prepared by solubilization in concentrated aqueous solutions of weak organic acids and drying. Pharm Res. 2016;33(6):1456–71.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abu T. M. Serajuddin.

Additional information

Guest Editors: Otilia M. Koo, Panayiotis P. Constantinides, Lavinia M. Lewis, and Joseph Reo

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 39 kb)

ESM 2

(DOCX 55 kb)

ESM 3

(DOCX 101 kb)

ESM 4

(DOCX 165 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gumaste, S.G., Gupta, S.S. & Serajuddin, A.T.M. Investigation of Polymer-Surfactant and Polymer-Drug-Surfactant Miscibility for Solid Dispersion. AAPS J 18, 1131–1143 (2016). https://doi.org/10.1208/s12248-016-9939-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-016-9939-5

KEY WORDS

Navigation