Skip to main content
Log in

A Novel Physiology-Based Mathematical Model to Estimate Red Blood Cell Lifespan in Different Human Age Groups

  • Research Article
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Direct measurement of red blood cell (RBC) survival in humans has improved from the original accurate but limited differential agglutination technique to the current reliable, safe, and accurate biotin method. Despite this, all of these methods are time consuming and require blood sampling over several months to determine the RBC lifespan. For situations in which RBC survival information must be obtained quickly, these methods are not suitable. With the exception of adults and infants, RBC survival has not been extensively investigated in other age groups. To address this need, we developed a novel, physiology-based mathematical model that quickly estimates RBC lifespan in healthy individuals at any age. The model is based on the assumption that the total number of RBC recirculations during the lifespan of each RBC (denoted by N max) is relatively constant for all age groups. The model was initially validated using the data from our prior infant and adult biotin-labeled red blood cell studies and then extended to the other age groups. The model generated the following estimated RBC lifespans in 2-year-old, 5-year-old, 8-year-old, and 10-year-old children: 62, 74, 82, and 86 days, respectively. We speculate that this model has useful clinical applications. For example, HbA1c testing is not reliable in identifying children with diabetes because HbA1c is directly affected by RBC lifespan. Because our model can estimate RBC lifespan in children at any age, corrections to HbA1c values based on the model-generated RBC lifespan could improve diabetes diagnosis as well as therapy in children.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

RBC:

red blood cell

CO:

cardiac output

BV:

blood volume

BW:

body weight

BioRBCs:

biotin-labeled red blood cells

References

  1. Franco RS, Yasin Z, Lohmann JM, et al. The survival characteristics of dense sickle cells. Blood. 2000;96(10):3610–7.

    CAS  PubMed  Google Scholar 

  2. Luten M, Roerdinkholder-Stoelwinder B, Schaap NP, de Grip WJ, Bos HJ, Bosman GJ. Survival of red blood cells after transfusion: a comparison between red cells concentrates of different storage periods. Transfusion. 2008;48(7):1478–85. doi:10.1111/j.1537-2995.2008.01734.x.

    Article  CAS  PubMed  Google Scholar 

  3. Strauss RG, Mock DM, Widness JA, Johnson K, Cress G, Schmidt RL. Posttransfusion 24-hour recovery and subsequent survival of allogeneic red blood cells in the bloodstream of newborn infants. Transfusion. 2004;44(6):871–6. doi:10.1111/j.1537-2995.2004.03393.x.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Cohen RM, Franco RS, Khera PK, et al. Red cell life span heterogeneity in hematologically normal people is sufficient to alter HbA1c. Blood. 2008;112(10):4284–91. doi:10.1182/blood-2008-04-154112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Khera PK, Smith EP, Lindsell CJ, et al. Use of an oral stable isotope label to confirm variation in red blood cell mean age that influences HbA1c interpretation. Am J Hematol. 2015;90(1):50–5. doi:10.1002/ajh.23866.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ashby W. The determination of the length of life of transfused blood corpuscles in man. J Exp Med. 1919;29(3):267–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mock DM, Widness JA, Veng-Pedersen P, et al. Measurement of posttransfusion red cell survival with the biotin label. Transfus Med Rev. 2014;28(3):114–25. doi:10.1016/j.tmrv.2014.03.003.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Widness JA, Nalbant D, Matthews NI, et al. Tracking donor RBC survival in premature infants: agreement of multiple populations of biotin-labeled RBCs with Kidd antigen-mismatched RBCs. Pediatr Res. 2013;74(6):689–97. doi:10.1038/pr.2013.163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mock DM, Matthews NI, Zhu S, et al. Red blood cell (RBC) survival determined in humans using RBCs labeled at multiple biotin densities. Transfusion. 2011;51(5):1047–57. doi:10.1111/j.1537-2995.2010.02926.x.

    Article  PubMed  Google Scholar 

  10. Allison AC. Turnovers of erythrocytes and plasma proteins in mammals. Nature. 1960;188:37–40.

    Article  CAS  PubMed  Google Scholar 

  11. Hirsimaki H, Kero P, Wanne O, Erkkola R, Makoi Z. Doppler-derived cardiac output in healthy newborn infants in relation to physiological patency of the ductus arteriosus. Pediatr Cardiol. 1988;9(2):79–83. doi:10.1007/BF02083704.

    Article  CAS  PubMed  Google Scholar 

  12. Sisson TR, Lund CJ, Whalen LE, Telek A. The blood volume of infants. I. The full-term infant in the first year of life. J Pediatr. 1959;55(2):163–79.

    Article  CAS  PubMed  Google Scholar 

  13. de Simone G, Devereux RB, Daniels SR, et al. Stroke volume and cardiac output in normotensive children and adults. Assessment of relations with body size and impact of overweight. Circulation. 1997;95(7):1837–43.

    Article  PubMed  Google Scholar 

  14. Leffler S, Hayes M. Analysis of parental estimates of children’s weights in the ED. Ann Emerg Med. 1997;30(2):167–70.

    Article  CAS  PubMed  Google Scholar 

  15. Kuruvilla DJ, Widness JA, Nalbant D, Schmidt RL, Mock DM, Veng-Pedersen P. A method to evaluate fetal erythropoiesis from postnatal survival of fetal RBCs. AAPS J. 2015;17(5):1246–54. doi:10.1208/s12248-015-9784-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Williams L. Reference values for total blood volume and cardiac output in humans. 1994.

  17. http://reference.medscape.com/calculator/estimated-blood-volume

  18. http://www.disabled-world.com/artman/publish/height-weight-teens.shtml

  19. Widness JA, Kuruvilla DJ, Mock DM, Matthews NI, Nalbant D, Gress GA, et al. Autologous Infant and Allogeneic Adult Red Cells Demonstrate Similar Concurrent Post-Transfusion Survival in Very Low Birth Weight Neonates. J Pediatr. 2015;167(5):1001–6.

  20. Sisson TR, Whalen LE, Telek A. The blood volume of infants. II. The premature infant during the first year of life. J Pediatr. 1959;55:430–46.

    Article  CAS  PubMed  Google Scholar 

  21. Landaw SA. Factors that accelerate or retard red blood cell senescence. Blood Cells. 1988;14(1):47–67.

    CAS  PubMed  Google Scholar 

  22. Franco RS. Measurement of red cell lifespan and aging. Transfus Med Hemother: Off Organ Dtsch Ges Transfusionsmed Immunhamatol. 2012;39(5):302–7. doi:10.1159/000342232.

    Article  Google Scholar 

  23. Franco RS. The measurement and importance of red cell survival. Am J Hematol. 2009;84(2):109–14. doi:10.1002/ajh.21298.

    Article  PubMed  Google Scholar 

  24. Recommended methods for radioisotope red-cell survival studies. A report by the ICSH panel on diagnostic applications of radioisotopes in haematology. Br J Haematol. 1971;21(2):241–50.

  25. Mollison P, Engelfriet C, Contreras M. The transfusion of red cells. Blackwell Scientific Publications; 1987. p 99–115.

  26. Mock DM, Lankford GL, Widness JA, Burmeister LF, Kahn D, Strauss RG. Measurement of red cell survival using biotin-labeled red cells: validation against 51Cr-labeled red cells. Transfusion. 1999;39(2):156–62.

    Article  CAS  PubMed  Google Scholar 

  27. Hoffmann-Fezer G, Maschke H, Zeitler HJ, et al. Direct in vivo biotinylation of erythrocytes as an assay for red cell survival studies. Ann Hematol. 1991;63(4):214–7.

    Article  CAS  PubMed  Google Scholar 

  28. Mollisson P. Blood transfusion in clinical medicine. 7th ed. Blackwell Scientific Publications; 1983. p. 93–110.

  29. Pearson HA. Life-span of the fetal red blood cell. J Pediatr. 1967;70(2):166–71.

    Article  CAS  PubMed  Google Scholar 

  30. Hollingsworth JW. Lifespan of fetal erythrocytes. J Lab Clin Med. 1955;45(3):469–73.

    CAS  PubMed  Google Scholar 

  31. Egberts J, Hardeman MR, Luykx LM. Decreased deformability of donor red blood cells after intrauterine transfusion in the human fetus: possible reason for their reduced life span? Transfusion. 2004;44(8):1231–7. doi:10.1111/j.1537-2995.2004.04014.x.

    Article  CAS  PubMed  Google Scholar 

  32. Li CK, Li EK. Mechanical fatigue as a possible determinant of in vivo longevity of red blood cells. IEEE Trans Biomed Eng. 1983;30(4):226–8.

    Article  CAS  PubMed  Google Scholar 

  33. Lee JM, Wu EL, Tarini B, Herman WH, Yoon E. Diagnosis of diabetes using hemoglobin A1c: should recommendations in adults be extrapolated to adolescents? J Pediatr. 2011;158(6):947–52 e1-3. doi:10.1016/j.jpeds.2010.11.026.

    Article  CAS  PubMed  Google Scholar 

  34. Nowicka P, Santoro N, Liu H, et al. Utility of hemoglobin A(1c) for diagnosing prediabetes and diabetes in obese children and adolescents. Diabetes Care. 2011;34(6):1306–11. doi:10.2337/dc10-1984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Vehik K, Cuthbertson D, Boulware D, et al. Performance of HbA1c as an early diagnostic indicator of type 1 diabetes in children and youth. Diabetes Care. 2012;35(9):1821–5. doi:10.2337/dc12-0111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hosking J, Metcalf BS, Jeffery AN, Streeter AJ, Voss LD, Wilkin TJ. Divergence between HbA1c and fasting glucose through childhood: implications for diagnosis of impaired fasting glucose (Early Bird 52). Pediatr Diabetes. 2014;15(3):214–9.

    Article  CAS  PubMed  Google Scholar 

  37. Korell J, Vos FE, Coulter CV, Schollum JB, Walker RJ, Duffull SB. Modeling red blood cell survival data. J Pharmacokinet Pharmacodyn. 2011;38(6):787–801. doi:10.1007/s10928-011-9220-6.

    Article  PubMed  Google Scholar 

  38. McCurdy PR, Mahmood L, Sherman AS. Red cell life span in sickle cell-hemoglobin C disease with a note about sickle cell-hemoglobin O ARAB. Blood. 1975;45(2):273–9.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the helpful discussions with Robert M. Cohen, MD (University of Cincinnati), and Robert S. Franco, PhD (University of Cincinnati), regarding the clinical applications of the present study. This work was supported in part by National Institutes of Health (NIH) US Public Health Service Program Project Grant 2 P01 HL046925 and the National Center for Research Resources, a part of the NIH, Grant Number UL1TR000039. We acknowledge Sysmex for the loan of their hematology analyzer. We thank Iowa’s neonatal nurse research team. We also acknowledge the research laboratory teams in University of Iowa and University of Arkansas for Medical Sciences. We are grateful to the families of study subjects in allowing their infants to participate.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guohua An.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, G., Widness, J.A., Mock, D.M. et al. A Novel Physiology-Based Mathematical Model to Estimate Red Blood Cell Lifespan in Different Human Age Groups. AAPS J 18, 1182–1191 (2016). https://doi.org/10.1208/s12248-016-9923-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-016-9923-0

Keywords

Navigation