Skip to main content

Advertisement

Log in

Fetal Microchimerism in Cancer Protection and Promotion: Current Understanding in Dogs and the Implications for Human Health

  • Review Article
  • Theme: Human and Veterinary Therapeutics: Interspecies Extrapolations and Shared Challenges
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Fetal microchimerism is the co-existence of small numbers of cells from genetically distinct individuals living within a mother’s body following pregnancy. During pregnancy, bi-directional exchange of cells occurs resulting in maternal microchimerism and even sibling microchimerism in offspring. The presence of fetal microchimerism has been identified with lower frequency in patients with cancers such as breast and lymphoma and with higher frequency in patients with colon cancer and autoimmune diseases. Microchimeric cells have been identified in healing and healed tissues as well as normal and tumor tissues. This has led to the hypothesis that fetal microchimerism may play a protective role in some cancers and may provoke other cancers or autoimmune disease. The long periods of risk for these diseases make it a challenge to prospectively study this phenomenon in human populations. Dogs get similar cancers as humans, share our homes and environmental exposures, and live compressed life-spans, allowing easier prospective study of disease development. This review describes the current state of understanding of fetal microchimerism in humans and dogs and highlights the similarities of the common cancers mammary carcinoma, lymphoma, and colon cancer between the two species. Study of fetal microchimerism in dogs might hold the key to characterization of the type and function of microchimeric cells and their role in health and disease. Such an understanding could then be applied to preventing and treating disease in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

GVHD:

Graft vs host disease

nHL:

Non-Hodgkin Lymphoma

References

  1. Kallenbach LR, Johnson KL, Bianchi DW. Fetal cell microchimerism and cancer: a nexus of reproduction, immunology, and tumor biology. Cancer Res. 2011;71(1):8–12.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Dierselhuis MP, Goulmy E. We are all born as microchimera. Chimerism. 2013;4(1):18–9.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Cain GR, Champlin RE. Long-term complete chimerism and stable hematopoiesis in beagles after fetal liver hematopoietic stem cell transplantation. Am J Vet Res. 1989;50(8):1282–4.

    CAS  PubMed  Google Scholar 

  4. Fugazzola L, Cirello V, Beck-Peccoz P. Fetal microchimerism as an explanation of disease. Nat Rev Endocrinol. 2011;7(2):89–97.

    Article  CAS  PubMed  Google Scholar 

  5. Jeanty C, Derderian SC, Mackenzie TC. Maternal-fetal cellular trafficking: clinical implications and consequences. Curr Opin Pediatr. 2014;26(3):377–82.

    Article  PubMed  Google Scholar 

  6. Gilmore GL, Haq B, Shadduck RK, Jasthy SL, Lister J. Fetal-maternal microchimerism in normal parous females and parous female cancer patients. Exp Hematol. 2008;36(9):1073–7.

    Article  CAS  PubMed  Google Scholar 

  7. Hansen K, Khanna C. Spontaneous and genetically engineered animal models; use in preclinical cancer drug development. Eur J Cancer. 2004;40(6):858–80.

    Article  CAS  PubMed  Google Scholar 

  8. Henry CJ, Bryan JN. Not lost in translation: how study of diseases in our pets can benefit them and us. Mo Med. 2013;110(3):216–9.

    PubMed  Google Scholar 

  9. Thomas R, Smith KC, Ostrander EA, Galibert F, Breen M. Chromosome aberrations in canine multicentric lymphomas detected with comparative genomic hybridisation and a panel of single locus probes. Br J Cancer. 2003;89(8):1530–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Igarashi H, Ohno K, Ohmi A, Tsukamoto A, Nakashima K, Fujino Y, et al. Polypoid adenomas secondary to inflammatory colorectal polyps in 2 miniature dachshunds. J Vet Med Sci. 2013;75(4):535–8.

    Article  PubMed  Google Scholar 

  11. Axiak-Bechtel SM, Kumar SR, Hansen SA, Bryan JN. Y-chromosome DNA is present in the blood of female dogs suggesting the presence of fetal microchimerism. PLoS ONE. 2013;8(7):e68114.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Kumar SR, Hansen SA, Axiak-Bechtel SM, Bryan JN. The health effects of fetal microchimerism can be modeled in companion dogs. Chimerism. 2013;4(4):139–41.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Nelson JL. The otherness of self: microchimerism in health and disease. Trends Immunol. 2012;33(8):421–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Chan WF, Gurnot C, Montine TJ, Sonnen JA, Guthrie KA, Nelson JL. Male microchimerism in the human female brain. PLoS ONE. 2012;7(9):e45592.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Khosrotehrani K, Johnson KL, Cha DH, Salomon RN, Bianchi DW. Transfer of fetal cells with multilineage potential to maternal tissue. JAMA. 2004;292(1):75–80.

    Article  CAS  PubMed  Google Scholar 

  16. Kaplan HS. On the biology and immunology of Hodgkin’s disease. Haematol Blood Transfus. 1981;26(11–23):11–23.

    CAS  PubMed  Google Scholar 

  17. Gadi VK, Nelson JL. Fetal microchimerism in women with breast cancer. Cancer Res. 2007;67(19):9035–8.

    Article  CAS  PubMed  Google Scholar 

  18. Gadi VK, Malone KE, Guthrie KA, Porter PL, Nelson JL. Case-control study of fetal microchimerism and breast cancer. PLoS ONE. 2008;3(3):e1706.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Dhimolea E, Denes V, Lakk M, Al-Bazzaz S, Aziz-Zaman S, Pilichowska M, et al. High male chimerism in the female breast shows quantitative links with cancer. Int J Cancer. 2013;133(4):835–42.

    Article  CAS  PubMed  Google Scholar 

  20. Ando T, Imaizumi M, Graves PN, Unger P, Davies TF. Intrathyroidal fetal microchimerism in Graves’ disease. J Clin Endocrinol Metab. 2002;87(7):3315–20.

    CAS  PubMed  Google Scholar 

  21. Cirello V, Perrino M, Colombo C, Muzza M, Filopanti M, Vicentini L, et al. Fetal cell microchimerism in papillary thyroid cancer: studies in peripheral blood and tissues. Int J Cancer. 2010;126(12):2874–8.

    CAS  PubMed  Google Scholar 

  22. Klintschar M, Immel UD, Kehlen A, Schwaiger P, Mustafa T, Mannweiler S, et al. Fetal microchimerism in Hashimoto’s thyroiditis: a quantitative approach. Eur J Endocrinol. 2006;154(2):237–41.

    Article  CAS  PubMed  Google Scholar 

  23. Renne C, Ramos LE, Steimle-Grauer SA, Ziolkowski P, Pani MA, Luther C, et al. Thyroid fetal male microchimerisms in mothers with thyroid disorders: presence of Y-chromosomal immunofluorescence in thyroid-infiltrating lymphocytes is more prevalent in Hashimoto’s thyroiditis and Graves’ disease than in follicular adenomas. J Clin Endocrinol Metab. 2004;89(11):5810–4.

    Article  CAS  PubMed  Google Scholar 

  24. Kamper-Jorgensen M, Biggar RJ, Tjonneland A, Hjalgrim H, Kroman N, Rostgaard K, et al. Opposite effects of microchimerism on breast and colon cancer. Eur J Cancer. 2012;48(14):2227–35.

    Article  PubMed  Google Scholar 

  25. Nguyen HS, Oster M, Avril MF, Boitier F, Mortier L, Richard MA, et al. Fetal microchimeric cells participate in tumour angiogenesis in melanomas occurring during pregnancy. Am J Pathol. 2009;174(2):630–7.

    Article  Google Scholar 

  26. Priester WA, McKay FW. The occurrence of tumors in domestic animals. In: Zeigler JL, editor. National Cancer Institute Monographs. Bethesda: US Dept of Health and Human Services; 1980.

    Google Scholar 

  27. Schneider R, Dorn CR, Taylor DO. Factors influencing canine mammary cancer development and postsurgical survival. J Natl Cancer Inst. 1969;43(6):1249–61.

    CAS  PubMed  Google Scholar 

  28. Perez AD, Rutteman GR, Pena L, Beynen AC, Cuesta P. Relation between habitual diet and canine mammary tumors in a case-control study. J Vet Intern Med. 1998;12(3):132–9.

    Article  Google Scholar 

  29. Sonnenschein EG, Glickman LT, Goldschmidt MH, McKee LJ. Body conformation, diet, and risk of breast cancer in pet dogs: a case-control study. Am J Epidemiol. 1991;133(7):694–703.

    CAS  PubMed  Google Scholar 

  30. Chang CC, Tsai MH, Liao JW, Chan JP, Wong ML, Chang SC. Evaluation of hormone receptor expression for use in predicting survival of female dogs with malignant mammary gland tumors. J Am Vet Med Assoc. 2009;235(4):391–6.

    Article  CAS  PubMed  Google Scholar 

  31. Shafiee R, Javanbakht J, Atyabi N, Kheradmand P, Kheradmand D, Bahrami A, et al. Diagnosis, classification and grading of canine mammary tumours as a model to study human breast cancer: an clinico-cytohistopathological study with environmental factors influencing public health and medicine. Cancer Cell Int. 2013;13:79.

    Article  PubMed Central  PubMed  Google Scholar 

  32. Sorenmo KU, Shofer FS, Goldschmidt MH. Effect of spaying and timing of spaying on survival of dogs with mammary carcinoma. J Vet Intern Med. 2000;14(3):266–70.

    Article  CAS  PubMed  Google Scholar 

  33. Illera JC, Perez-Alenza MD, Nieto A, Jimenez MA, Silvan G, Dunner S, et al. Steroids and receptors in canine mammary cancer. Steroids. 2006;71(7):541–8.

    Article  CAS  PubMed  Google Scholar 

  34. Gama A, Alves A, Schmitt F. Identification of molecular phenotypes in canine mammary carcinomas with clinical implications: application of the human classification. Virchows Arch. 2008;453(2):123–32.

    Article  CAS  PubMed  Google Scholar 

  35. Morris JS, Dobson JM, Bostock DE. Use of tamoxifen in the control of canine mammary neoplasia. Vet Rec. 1993;133(22):539–42.

    Article  CAS  PubMed  Google Scholar 

  36. Tavares WL, Lavalle GE, Figueiredo MS, Souza AG, Bertagnolli AC, Viana FA, et al. Evaluation of adverse effects in tamoxifen exposed healthy female dogs. Acta Vet Scand. 2010;52:67.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Perez Alenza MD, Tabanera E, Pena L. Inflammatory mammary carcinoma in dogs: 33 cases (1995-1999). J Am Vet Med Assoc. 2001;219(8):1110–4.

    Article  CAS  PubMed  Google Scholar 

  38. Marconato L, Romanelli G, Stefanello D, Giacoboni C, Bonfanti U, Bettini G, et al. Prognostic factors for dogs with mammary inflammatory carcinoma: 43 cases (2003-2008). J Am Vet Med Assoc. 2009;235(8):967–72.

    Article  PubMed  Google Scholar 

  39. Eun JK, Guthrie KA, Zirpoli G, Gadi VK. In situ breast cancer and microchimerism. Sci Rep. 2013;3:2192.

    Article  PubMed Central  PubMed  Google Scholar 

  40. Gadi VK. Fetal microchimerism in breast from women with and without breast cancer. Breast Cancer Res Treat. 2010;121(1):241–4.

    Article  PubMed  Google Scholar 

  41. Kamper-Jorgensen M, Hjalgrim H, Andersen AM, Gadi VK, Tjonneland A. Male microchimerism and survival among women. Int J Epidemiol. 2014;43(1):168–73.

    Article  PubMed  Google Scholar 

  42. Priester WA, McKay FW. The occurrence of tumors in domestic animals. Natl Cancer Inst Monogr. 1980;54:1–210.

    PubMed  Google Scholar 

  43. Shaffer AL, Rosenwald A, Staudt LM. Lymphoid malignancies: the dark side of B-cell differentiation. Nat Rev Immunol. 2002;2(12):920–32.

    Article  CAS  PubMed  Google Scholar 

  44. Greenlee PG, Filippa DA, Quimby FW, Patnaik AK, Calvano SE, Matus RE, et al. Lymphomas in dogs. A morphologic, immunologic, and clinical study. Cancer. 1990;66(3):480–90.

    Article  CAS  PubMed  Google Scholar 

  45. Fournel-Fleury C, Magnol JP, Bricaire P, Marchal T, Chabanne L, Delverdier A, et al. Cytohistological and immunological classification of canine malignant lymphomas: comparison with human non-Hodgkin’s lymphomas. J Comp Pathol. 1997;117(1):35–59.

    Article  CAS  PubMed  Google Scholar 

  46. Carter RF, Valli VE, Lumsden JH. The cytology, histology and prevalence of cell types in canine lymphoma classified according to the National Cancer Institute Working Formulation. Can J Vet Res. 1986;50(2):154–64.

    PubMed Central  CAS  PubMed  Google Scholar 

  47. Milner RJ, Pearson J, Nesbit JW, Close P. Immunophenotypic classification of canine malignant lymphoma on formalin-mixed paraffin wax-embedded tissue by means of CD3 and CD79a cell markers. Onderstepoort J Vet Res. 1996;63(4):309–13.

    CAS  PubMed  Google Scholar 

  48. Valli VE, Vernau W, de Lorimier LP, Graham PS, Moore PF. Canine indolent nodular lymphoma. Vet Pathol. 2006;43(3):241–56.

    Article  CAS  PubMed  Google Scholar 

  49. Engels EA. Infectious agents as causes of non-Hodgkin lymphoma. Cancer Epidemiol Biomarkers Prev. 2007;16(3):401–4.

    Article  CAS  PubMed  Google Scholar 

  50. Valli VE, San MM, Barthel A, Bienzle D, Caswell J, Colbatzky F, et al. Classification of canine malignant lymphomas according to the World Health Organization criteria. Vet Pathol. 2011;48(1):198–211.

    Article  CAS  PubMed  Google Scholar 

  51. Valli VE, Kass PH, San MM, Scott F. Canine lymphomas: association of classification type, disease stage, tumor subtype, mitotic rate, and treatment with survival. Vet Pathol. 2013;50(5):738–48.

    Article  CAS  PubMed  Google Scholar 

  52. Stern M, Ruggeri L, Mancusi A, Bernardo ME, de Angelis C, Bucher C, et al. Survival after T cell-depleted haploidentical stem cell transplantation is improved using the mother as donor. Blood. 2008;112(7):2990–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Chang YJ, Huang XJ. Donor lymphocyte infusions for relapse after allogeneic transplantation: when, if and for whom? Blood Rev. 2013;27(1):55–62.

    Article  CAS  PubMed  Google Scholar 

  54. McEntee MF, Brenneman KA. Dysregulation of beta-catenin is common in canine sporadic colorectal tumors. Vet Pathol. 1999;36(3):228–36.

    Article  CAS  PubMed  Google Scholar 

  55. Gespach C. Stem cells and colon cancer: the questionable cancer stem cell hypothesis. Gastroenterol Clin Biol. 2010;34(12):653–61.

    Article  CAS  PubMed  Google Scholar 

  56. Thliveris AT, Schwefel B, Clipson L, Plesh L, Zahm CD, Leystra AA, et al. Transformation of epithelial cells through recruitment leads to polyclonal intestinal tumors. Proc Natl Acad Sci U S A. 2013;110(28):11523–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Sipos PI, Rens W, Schlecht H, Fan X, Wareing M, Hayward C, et al. Uterine vasculature remodeling in human pregnancy involves functional macrochimerism by endothelial colony forming cells of fetal origin. Stem Cells. 2013;31(7):1363–70.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Mold JE, Michaelsson J, Burt TD, Muench MO, Beckerman KP, Busch MP, et al. Maternal alloantigens promote the development of tolerogenic fetal regulatory T cells in utero. Science. 2008;322(5907):1562–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Owen RD, Wood HR, Foord AG, Sturgeon P, Baldwin LG. Evidence for actively acquired tolerance to Rh antigens. Proc Natl Acad Sci U S A. 1954;40(6):420–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Joo SY, Song EY, Shin Y, Ha J, Kim SJ, Park MH. Beneficial effects of pretransplantation microchimerism on rejection-free survival in HLA-haploidentical family donor renal transplantation. Transplantation. 2013;95(11):1375–82.

    Article  PubMed  Google Scholar 

  61. Ichinohe T, Teshima T, Matsuoka K, Maruya E, Saji H. Fetal-maternal microchimerism: impact on hematopoietic stem cell transplantation. Curr Opin Immunol. 2005;17(5):546–52.

    Article  CAS  PubMed  Google Scholar 

  62. Berry SM, Hassan SS, Russell E, Kukuruga D, Land S, Kaplan J. Association of maternal histocompatibility at class II HLA loci with maternal microchimerism in the fetus. Pediatr Res. 2004;56(1):73–8.

    Article  CAS  PubMed  Google Scholar 

  63. Hayward A, Ambruso D, Battaglia F, Donlon T, Eddelman K, Giller R, et al. Microchimerism and tolerance following intrauterine transplantation and transfusion for alpha-thalassemia-1. Fetal Diagn Ther. 1998;13(1):8–14.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey N. Bryan.

Additional information

Guest Editor: Marilyn Martinez

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bryan, J.N. Fetal Microchimerism in Cancer Protection and Promotion: Current Understanding in Dogs and the Implications for Human Health. AAPS J 17, 506–512 (2015). https://doi.org/10.1208/s12248-015-9731-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-015-9731-y

Keywords

Navigation