Skip to main content

Advertisement

Log in

Choice of LC-MS Methods for the Absolute Quantification of Drug-Metabolizing Enzymes and Transporters in Human Tissue: a Comparative Cost Analysis

  • Research Article
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

The quantification of drug-metabolizing enzymes and transporters is important for in vitro-in vivo extrapolation (IVIVE) of xenobiotic clearance, which has become an integral part of drug development. There are different mass spectrometry-based techniques used for quantitative proteomics, and as more laboratories are opting for the use of these methods, selecting the most appropriate tool is becoming a concern. For the first time, we attempt to determine the significance of cost of different LC-MS methods of quantitative analysis of these proteins and to present a framework to objectively assess the choice of the techniques. Based on our analysis, quantification using labeled internal standards is more expensive per sample but provides higher quality data than label-free quantification. Quantification using absolute quantification synthetic peptides is the approach of choice for analyzing less than nine proteins, whereas when quantifying a defined set of proteins (10–50), such as enzymes, in a reasonably large number of samples (20–100), the quantification concatemer technique is more economical, followed by label-free quantification. When analyzing proteomes or sub-proteomes (≥500 proteins), label-free quantification is more cost-effective than the use of labeled internal standards. A cost-benefit approach is described to assess the choice of the most appropriate mass spectrometry-based approach for the quantification of proteins relevant to IVIVE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

P450:

Cytochrome P450

UGT:

Uridine 5′-diphospho-glucuronosyltransferase

QconCAT:

Quantification concatemer

AQUA:

Absolute quantification

PSAQ:

Protein standards for absolute quantification

SRM:

Selected reaction monitoring

LC-MS:

Liquid chromatography in conjunction with mass spectrometry

MSMS:

Tandem mass spectrometry

References

  1. Couto N, Barber J, Gaskell SJ. Matrix-assisted laser desorption/ionisation mass spectrometric response factors of peptides generated using different proteolytic enzymes. J Mass Spectrom. 2011;46(12):1233–40.

    Article  CAS  PubMed  Google Scholar 

  2. Ong S-E, Mann M. Mass spectrometry-based proteomics turns quantitative. Nat Chem Biol. 2005;1(5):252–62.

    Article  CAS  PubMed  Google Scholar 

  3. Al-Majdoub ZM, Carroll KM, Gaskell SJ, Barber J. Quantification of the proteins of the bacterial ribosome using QconCAT technology. J Proteome Res Am Chem Soc. 2014;13(3):1211–22.

    Article  CAS  Google Scholar 

  4. Kito K, Ota K, Fujita T, Ito T. A synthetic protein approach toward accurate mass spectrometric quantification of component stoichiometry of multiprotein complexes. J Proteome Res. 2007;6(2):792–800.

    Article  CAS  PubMed  Google Scholar 

  5. Ding C, Li Y, Kim B-J, Malovannaya A, Jung SY, Wang Y, et al. Quantitative analysis of cohesin complex stoichiometry and SMC3 modification-dependent protein interactions. J Proteome Res Am Chem Soc. 2011;10(8):3652–9.

    Article  CAS  Google Scholar 

  6. Gerber SA, Rush J, Stemman O, Kirschner MW, Gygi SP. Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. Proc Natl Acad Sci U S A. 2003;100(12):6940–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Pratt JM, Simpson DM, Doherty MK, Rivers J, Gaskell SJ, Beynon RJ. Multiplexed absolute quantification for proteomics using concatenated signature peptides encoded by QconCAT genes. Nat Protoc Nat Publ Group. 2006;1(2):1029–43.

    Article  CAS  Google Scholar 

  8. Carroll KM, Simpson DM, Eyers CE, Knight CG, Brownridge P, Dunn WB, et al. Absolute quantification of the glycolytic pathway in yeast: deployment of a complete QconCAT approach. Mol Cell Proteomics. 2011;10(12):M111.007633.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Beynon RJ, Doherty MK, Pratt JM, Gaskell SJ. Multiplexed absolute quantification in proteomics using artificial QCAT proteins of concatenated signature peptides. Nat Methods. 2005;2(8):587–9.

    Article  CAS  PubMed  Google Scholar 

  10. Brun V, Dupuis A, Adrait A, Marcellin M, Thomas D, Court M, et al. Isotope-labeled protein standards: toward absolute quantitative proteomics. Mol Cell Proteomics. 2007;6(12):2139–49.

    Article  CAS  PubMed  Google Scholar 

  11. Dupuis A, Hennekinne J-A, Garin J, Brun V. Protein standard absolute quantification (PSAQ) for improved investigation of staphylococcal food poisoning outbreaks. Proteomics. 2008;8(22):4633–6.

    Article  CAS  PubMed  Google Scholar 

  12. Silva JC, Gorenstein MV, Li G-Z, Vissers JPC, Geromanos SJ. Absolute quantification of proteins by LCMSE: a virtue of parallel MS acquisition. Mol Cell Proteomics. 2006;5(1):144–56.

    Article  CAS  PubMed  Google Scholar 

  13. Silva JC, Denny R, Dorschel C, Gorenstein MV, Li G-Z, Richardson K, et al. Simultaneous qualitative and quantitative analysis of the Escherichia coli proteome: a sweet tale. Mol Cell Proteomics. 2006;5(4):589–607.

    Article  CAS  PubMed  Google Scholar 

  14. Schwanhäusser B, Busse D, Li N, Dittmar G, Schuchhardt J, Wolf J, et al. Global quantification of mammalian gene expression control. Nature. 2011;473(7347):337–42.

    Article  PubMed  Google Scholar 

  15. Ishihama Y, Oda Y, Tabata T, Sato T, Nagasu T, Rappsilber J, et al. Exponentially modified protein abundance index (emPAI) for estimation of absolute protein amount in proteomics by the number of sequenced peptides per protein. Mol Cell Proteomics. 2005;4(9):1265–72.

    Article  CAS  PubMed  Google Scholar 

  16. Mayr BM, Kohlbacher O, Reinert K, Sturm M, Gröpl C, Lange E, et al. Absolute myoglobin quantitation in serum by combining two-dimensional liquid chromatography-electrospray ionization mass spectrometry and novel data analysis algorithms. J Proteome Res Am Chem Soc. 2006;5(2):414–21.

    Article  CAS  Google Scholar 

  17. Kito K, Ito T. Mass spectrometry-based approaches toward absolute quantitative proteomics. Curr Genomics. 2008;9(4):263–74.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Langenfeld E, Meyer HE, Marcus K. Quantitative analysis of highly homologous proteins: the challenge of assaying the “CYP-ome” by mass spectrometry. Anal Bioanal Chem. 2008;392(6):1123–34.

    Article  CAS  PubMed  Google Scholar 

  19. Brun V, Masselon C, Garin J, Dupuis A. Isotope dilution strategies for absolute quantitative proteomics. J Proteomics. 2009;72(5):740–9. Elsevier B.V.

    Article  CAS  PubMed  Google Scholar 

  20. Rodríguez-Suárez E, Whetton AD. The application of quantification techniques in proteomics for biomedical research. Mass Spectrom Rev. 2012;32(1):1–26.

    Article  PubMed  Google Scholar 

  21. Bantscheff M, Lemeer S, Savitski MM, Kuster B. Quantitative mass spectrometry in proteomics: critical review update from 2007 to the present. Anal Bioanal Chem. 2012;404(4):939–65.

    Article  CAS  PubMed  Google Scholar 

  22. Ahrné E, Molzahn L, Glatter T, Schmidt A. Critical assessment of proteome-wide label-free absolute abundance estimation strategies. Proteomics. 2013;13(17):2567–78.

    Article  PubMed  Google Scholar 

  23. Villanueva J, Carrascal M, Abian J. Isotope dilution mass spectrometry for absolute quantification in proteomics: concepts and strategies. J Proteomics. 2014;96:184–99. Elsevier B.V.

    Article  CAS  PubMed  Google Scholar 

  24. Prasad B, Unadkat JD. Optimized approaches for quantification of drug transporters in tissues and cells by MRM proteomics. AAPS J. 2014;16(4):634–48.

    Article  CAS  PubMed  Google Scholar 

  25. Wang MZ, Wu JQ, Dennison JB, Bridges AS, Hall SD, Kornbluth S, et al. A gel-free MS-based quantitative proteomic approach accurately measures cytochrome P450 protein concentrations in human liver microsomes. Proteomics. 2008;8(20):4186–96.

    Article  CAS  PubMed  Google Scholar 

  26. Langenfeld E, Zanger UM, Jung K, Meyer HE, Marcus K. Mass spectrometry-based absolute quantification of microsomal cytochrome P450 2D6 in human liver. Proteomics. 2009;9(9):2313–23.

    Article  CAS  PubMed  Google Scholar 

  27. Seibert C, Davidson BR, Fuller BJ, Patterson LH, Griffiths WJ, Wang Y. Multiple-approaches to the identification and quantification of cytochromes P450 in human liver tissue by mass spectrometry. J Proteome Res. 2009;8(4):1672–81.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Achour B, Barber J, Rostami-Hodjegan A. Cytochrome P450 Pig liver pie: determination of individual cytochrome P450 isoform contents in microsomes from two pig livers using liquid chromatography in conjunction with mass spectrometry [corrected]. Drug Metab Dispos. 2011;39(11):2130–4.

    Article  CAS  PubMed  Google Scholar 

  29. Kawakami H, Ohtsuki S, Kamiie J, Suzuki T, Abe T, Terasaki T. Simultaneous absolute quantification of 11 cytochrome P450 isoforms in human liver microsomes by liquid chromatography tandem mass spectrometry with in silico target peptide selection. J Pharm Sci. 2011;100(1):341–52.

    Article  CAS  PubMed  Google Scholar 

  30. Ohtsuki S, Schaefer O, Kawakami H, Inoue T, Liehner S, Saito A, et al. Simultaneous absolute protein quantification of transporters, cytochromes P450, and UDP-glucuronosyltransferases as a novel approach for the characterization of individual human liver: comparison with mRNA levels and activities. Drug Metab Dispos. 2012;40(1):83–92.

    Article  CAS  PubMed  Google Scholar 

  31. Russell MR, Achour B, Mckenzie EA, Lopez R, Harwood MD, Rostami-Hodjegan A, et al. Alternative fusion protein strategies to express recalcitrant QconCAT proteins for quantitative proteomics of human drug metabolizing enzymes and transporters. J Proteome Res. 2013;12(12)):5934–42.

    Article  CAS  PubMed  Google Scholar 

  32. Achour B, Russell MR, Barber J, Rostami-Hodjegan A. Simultaneous Quantification of the Abundance of Several Cytochrome P450 and Uridine 5’-Diphospho-Glucuronosyltransferase Enzymes in Human Liver Microsomes Using Multiplexed Targeted Proteomics. Drug Metab Dispos 2014;42(4):500–10.

  33. Choudhary G, Wu S-L, Shieh P, Hancock WS. Multiple enzymatic digestion for enhanced sequence coverage of proteins in complex proteomic mixtures using capillary LC with ion trap MS/MS. J Proteome Res. 2003;2(1):59–67.

    Article  CAS  PubMed  Google Scholar 

  34. Achour B, Barber J. The activities of Achromobacter lysyl endopeptidase and Lysobacter lysyl endoproteinase as digestive enzymes for quantitative proteomics. Rapid Commun Mass Spectrom. 2013;27(14):1669–72.

    Article  CAS  PubMed  Google Scholar 

  35. Kirkpatrick DS, Gerber SA, Gygi SP. The absolute quantification strategy: a general procedure for the quantification of proteins and post-translational modifications. Methods. 2005;35(3):265–73.

    Article  CAS  PubMed  Google Scholar 

  36. Kettenbach AN, Rush J, Gerber SA. Absolute quantification of protein and post-translational modification abundance with stable isotope-labeled synthetic peptides. Nat Protoc Nat Publ Group. 2011;6(2):175–86.

    Article  CAS  Google Scholar 

  37. Fallon JK, Harbourt DE, Maleki SH, Kessler FK, Ritter JK, Smith PC. Absolute quantification of human uridine-diphosphate glucuronosyl transferase (UGT) enzyme isoforms 1A1 and 1A6 by tandem LC-MS. Drug Metab Lett. 2008;2(3):210–22.

    Article  CAS  PubMed  Google Scholar 

  38. Uchida Y, Ohtsuki S, Katsukura Y, Ikeda C, Suzuki T, Kamiie J, et al. Quantitative targeted absolute proteomics of human blood–brain barrier transporters and receptors. J Neurochem. 2011;117(2):333–45.

    Article  CAS  PubMed  Google Scholar 

  39. Johnson H, Eyers CE, Eyers PA, Beynon RJ, Gaskell SJ. Rigorous determination of the stoichiometry of protein phosphorylation using mass spectrometry. J Am Soc Mass Spectrom. 2009;20(12):2211–20.

    Article  CAS  PubMed  Google Scholar 

  40. Brownridge P, Holman SW, Gaskell SJ, Grant CM, Harman VM, Hubbard SJ, et al. Global absolute quantification of a proteome: challenges in the deployment of a QconCAT strategy. Proteomics. 2011;11(15):2957–70.

    Article  CAS  PubMed  Google Scholar 

  41. Janecki DJ, Bemis KG, Tegeler TJ, Sanghani PC, Zhai L, Hurley TD, et al. A multiple reaction monitoring method for absolute quantification of the human liver alcohol dehydrogenase ADH1C1 isoenzyme. Anal Biochem. 2007;369(1):18–26.

    Article  CAS  PubMed  Google Scholar 

  42. Simpson DM, Beynon RJ. QconCATs: design and expression of concatenated protein standards for multiplexed protein quantification. Anal Bioanal Chem. 2012;404(4):977–89.

    Article  CAS  PubMed  Google Scholar 

  43. Silva JC, Denny R, Dorschel CA, Gorenstein M, Kass IJ, Li G-Z, et al. Quantitative proteomic analysis by accurate mass retention time pairs. Anal Chem Am Chem Soc. 2005;77(7):2187–200.

    Article  CAS  Google Scholar 

  44. Vissers JPC, Langridge JI, Aerts JMFG. Analysis and quantification of diagnostic serum markers and protein signatures for Gaucher disease. Mol Cell Proteomics. 2007;6(5):755–66.

    Article  CAS  PubMed  Google Scholar 

  45. Patel VJ, Thalassinos K, Slade SE, Connolly JB, Crombie A, Murrell JC, et al. A comparison of labeling and label-free mass spectrometry-based proteomics approaches. J Proteome Res. 2009;8(7):3752–9.

    Article  CAS  PubMed  Google Scholar 

  46. Peterson AC, Russell JD, Bailey DJ, Westphall MS, Coon JJ. Parallel reaction monitoring for high resolution and high mass accuracy quantitative, targeted proteomics. Mol Cell Proteomics. 2012;11(11):1475–88.

    Article  PubMed Central  PubMed  Google Scholar 

  47. Gallien S, Duriez E, Demeure K, Domon B. Selectivity of LC-MS/MS analysis: implication for proteomics experiments. J Proteomics. 2013;81:148–58. Elsevier B.V.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Manchester Pharmacy School, the University of Manchester, for financial support, Zubida Al-Majdoub for participating in the assessment of different quantitative techniques used for absolute quantification, David Knight and Stacy Warwood from the Faculty of Life Sciences at the University of Manchester for advice on instrument time cost, and Eleanor Savill for assisting in the preparation of the manuscript.

Conflicts of Interest

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amin Rostami-Hodjegan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 4010 kb)

ESM 2

(GIF 327 kb)

High Resolution Image (TIFF 2954 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al Feteisi, H., Achour, B., Barber, J. et al. Choice of LC-MS Methods for the Absolute Quantification of Drug-Metabolizing Enzymes and Transporters in Human Tissue: a Comparative Cost Analysis. AAPS J 17, 438–446 (2015). https://doi.org/10.1208/s12248-014-9712-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-014-9712-6

KEY WORDS

Navigation