Skip to main content

Advertisement

Log in

Strategic Approaches to Optimizing Peptide ADME Properties

  • Review Article
  • Theme: Preclinical Peptide Developability Assessment
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Development of peptide drugs is challenging but also quite rewarding. Five blockbuster peptide drugs are currently on the market, and six new peptides received first marketing approval as new molecular entities in 2012. Although peptides only represent 2% of the drug market, the market is growing twice as quickly and might soon occupy a larger niche. Natural peptides typically have poor absorption, distribution, metabolism, and excretion (ADME) properties with rapid clearance, short half-life, low permeability, and sometimes low solubility. Strategies have been developed to improve peptide drugability through enhancing permeability, reducing proteolysis and renal clearance, and prolonging half-life. In vivo, in vitro, and in silico tools are available to evaluate ADME properties of peptides, and structural modification strategies are in place to improve peptide developability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hopkins AL, Groom CR. Opinion: the druggable genome. Nat Rev Drug Discov. 2002;1(9):727–30.

    CAS  PubMed  Google Scholar 

  2. Gongora-Benitez M, Tulla-Puche J, Albericio F. Multifaceted roles of disulfide bonds. Peptides as therapeutics. Chem Rev (Washington, DC, U S). 2014;114(2):901–26.

    CAS  Google Scholar 

  3. Sun L. Peptide-based drug development. Mod Chem Appl. 2013;1(1):1–2.

    Google Scholar 

  4. Goodwin D, Simerska P, Toth I. Peptides as therapeutics with enhanced bioactivity. Curr Med Chem. 2012;19(26):4451–61.

    CAS  PubMed  Google Scholar 

  5. Craik DJ, Fairlie DP, Liras S, Price D. The future of peptide-based drugs. Chem Biol Drug Des. 2013;81(1):136–47.

    CAS  PubMed  Google Scholar 

  6. Kaspar AA, Reichert JM. Future directions for peptide therapeutics development. Drug Discov Today. 2013;18(17–18):807–17.

    CAS  PubMed  Google Scholar 

  7. Vlieghe P, Lisowski V, Martinez J, Khrestchatisky M. Synthetic therapeutic peptides: science and market. Drug Discov Today. 2010;15(1/2):40–56.

    CAS  PubMed  Google Scholar 

  8. Ladner RC, Sato AK, Gorzelany J, De Souza M. Phage display-derived peptides as therapeutic alternatives to antibodies. Drug Discov Today. 2004;9(12):525–9.

    CAS  PubMed  Google Scholar 

  9. Lax R, Meenan C. Challenges for therapeutic peptides part 1: on the inside, looking out. Innovations Pharm Technol. 2012;42:54–6.

    Google Scholar 

  10. Lax R, Meenan C. Challenges for therapeutic peptides part 2: delivery systems. Innovations Pharm Technol. 2012;43:42–4. 6.

    CAS  Google Scholar 

  11. Bray BL. Innovation: large-scale manufacture of peptide therapeutics by chemical synthesis. Nat Rev Drug Discov. 2003;2(7):587–93.

    CAS  PubMed  Google Scholar 

  12. Edmonds DJ, Price DA. Oral GLP-1 modulators for the treatment of diabetes. Annu Rep Med Chem. 2013;48:119–30.

    CAS  Google Scholar 

  13. Rezai T, Bock JE, Zhou MV, Kalyanaraman C, Lokey RS, Jacobson MP. Conformational flexibility, internal hydrogen bonding, and passive membrane permeability: successful in silico prediction of the relative permeabilities of cyclic peptides. J Am Chem Soc. 2006;128(43):14073–80.

    CAS  PubMed  Google Scholar 

  14. Mahato RI, Narang AS, Thoma L, Miller DD. Emerging trends in oral delivery of peptide and protein drugs. Crit Rev Ther Drug Carrier Syst. 2003;20(2–3):153–214.

    CAS  PubMed  Google Scholar 

  15. Diao L, Meibohm B. Pharmacokinetics and pharmacokinetic-pharmacodynamic correlations of therapeutic peptides. Clin Pharmacokinet. 2013;52(10):855–68.

    CAS  PubMed  Google Scholar 

  16. Rand AC, Leung SSF, Eng H, Rotter CJ, Sharma R, Kalgutkar AS, et al. Optimizing PK properties of cyclic peptides: the effect of side chain substitutions on permeability and clearance. Med Chem Comm. 2012;3(10):1282–9.

    CAS  Google Scholar 

  17. Werle M, Bernkop-Schnuerch A. Strategies to improve plasma half life time of peptide and protein drugs. Amino Acids. 2006;30(4):351–67.

    CAS  PubMed  Google Scholar 

  18. Zhou XH, Li Wan Po A. Peptide and protein drugs: II. Non-parenteral routes of delivery. Int J Pharm. 1991;75(2–3):117–30.

    CAS  Google Scholar 

  19. Hellriegel ET, Bjornsson TD, Hauck WW. Interpatient variability in bioavailability is related to the extent of absorption: implications for bioavailability and bioequivalence studies. Clin Pharmacol Ther (St Louis). 1996;60(6):601–7.

    CAS  Google Scholar 

  20. Maher S, Brayden DJ. Overcoming poor permeability: translating permeation enhancers for oral peptide delivery. Drug Discov Today: Technol. 2012;9(2):e113–e9.

    CAS  Google Scholar 

  21. Chin J, Foyez Mahmud KA, Kim SE, Park K, Byun Y. Insight of current technologies for oral delivery of proteins and peptides. Drug Discov Today: Technol. 2012;9(2):e105–e12.

    CAS  Google Scholar 

  22. Lin JH. Pharmacokinetics of biotech drugs: peptides, proteins and monoclonal antibodies. Curr Drug Metab. 2009;10(7):661–91.

    CAS  PubMed  Google Scholar 

  23. Periti P, Mazzei T, Mini E. Clinical pharmacokinetics of depot leuprorelin. Clin Pharmacokinet. 2002;41(7):485–504.

    CAS  PubMed  Google Scholar 

  24. Munegumi T. Hydrophobicity of peptides containing D-amino acids. Chem Biodivers. 2010;7(6):1670–9.

    CAS  PubMed  Google Scholar 

  25. Ano R, Kimura Y, Shima M, Matsuno R, Ueno T, Akamatsu M. Relationships between structure and high-throughput screening permeability of peptide derivatives and related compounds with artificial membranes: application to prediction of Caco-2 cell permeability. Bioorg Med Chem. 2004;12(1):257–64.

    CAS  PubMed  Google Scholar 

  26. Kramer SD, Wunderli-Allenspach H. No entry for TAT(44–57) into liposomes and intact MDCK cells: novel approach to study membrane permeation of cell-penetrating peptides. Biochim Biophys Acta Biomembr. 2003;1609(2):161–9.

    CAS  Google Scholar 

  27. Tang F, Borchardt RT. Characterization of the efflux transporter(s) responsible for restricting intestinal mucosa permeation of the coumarinic acid-based cyclic prodrug of the opioid peptide DADLE. Pharm Res. 2002;19(6):787–93.

    CAS  PubMed  Google Scholar 

  28. Ano R, Kimura Y, Urakami M, Shima M, Matsuno R, Ueno T, et al. Relationship between structure and permeability of dipeptide derivatives containing tryptophan and related compounds across human intestinal epithelial (Caco-2) cells. Bioorg Med Chem. 2004;12(1):249–55.

    CAS  PubMed  Google Scholar 

  29. Stevenson CL, Augustijns PF, Hendren RW. Use of Caco-2 cells and LC/MS/MS to screen a peptide combinatorial library for permeable structures. Int J Pharm. 1999;177(1):103–15.

    CAS  PubMed  Google Scholar 

  30. Beck JG, Chatterjee J, Laufer B, Kiran MU, Frank AO, Neubauer S, et al. Intestinal permeability of cyclic peptides: common key backbone motifs identified. J Am Chem Soc. 2012;134(29):12125–33.

    CAS  PubMed  Google Scholar 

  31. Bhardwaj RK, Herrera-Ruiz D, Sinko PJ, Gudmundsson OS, Knipp G. Delineation of human peptide transporter 1 (hPepT1)-mediated uptake and transport of substrates with varying transporter affinities utilizing stably transfected hPepT1/Madin-Darby canine kidney clones and Caco-2 cells. J Pharmacol Exp Ther. 2005;314(3):1093–100.

    CAS  PubMed  Google Scholar 

  32. Faria TN, Timoszyk JK, Stouch TR, Vig BS, Landowski CP, Amidon GL, et al. A novel high-throughput PepT1 transporter assay differentiates between substrates and antagonists. Mol Pharm. 2004;1(1):67–76.

    CAS  PubMed  Google Scholar 

  33. Balimane PV, Chong S, Patel K, Quan Y, Timoszyk J, Han Y-H, et al. Peptide transporter substrate identification during permeability screening in drug discovery: comparison of transfected MDCK-hPepT1 cells to Caco-2 cells. Arch Pharmacal Res. 2007;30(4):507–18.

    CAS  Google Scholar 

  34. Vadlapudi AD, Vadlapatla RK, Mitra AK. Sodium dependent multivitamin transporter (SMVT): a potential target for drug delivery. Curr Drug Targets. 2012;13(7):994–1003.

    CAS  PubMed  Google Scholar 

  35. Stenberg P, Luthman K, Artursson P. Prediction of membrane permeability to peptides from calculated dynamic molecular surface properties. Pharm Res. 1999;16(2):205–12.

    CAS  PubMed  Google Scholar 

  36. Rafi SB, Hearn BR, Vedantham P, Jacobson MP, Renslo AR. Predicting and improving the membrane permeability of peptidic small molecules. J Med Chem. 2012;55(7):3163–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  37. Jappar D, Hu Y, Smith DE. Effect of dose escalation on the in vivo oral absorption and disposition of glycylsarcosine in wild-type and Pept1 knockout mice. Drug Metab Dispos. 2011;39(12):2250–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  38. Li W, Zhang J, Tse FLS. Handbook of LC-MS bioanalysis: best practices, experimental protocols, and regulations 2013.

  39. Letzel T, Editor. Protein and peptide analysis by LC-MS: experimental strategies. [In: RSC Chromatogr. Monogr., 2011; 15]2011. 172 pp.

  40. van den Broek I, Sparidans RW, Schellens JHM, Beijnen JH. Quantitative bioanalysis of peptides by liquid chromatography coupled to (tandem) mass spectrometry. J Chromatogr B Anal Technol Biomed Life Sci. 2008;872(1–2):1–22.

    Google Scholar 

  41. Li W, Zhang J, Tse FLS. Strategies in quantitative LC-MS/MS analysis of unstable small molecules in biological matrices. Biomed Chromatogr. 2011;25(1–2):258–77.

    PubMed  Google Scholar 

  42. Nowatzke WL, Rogers K, Wells E, Bowsher RR, Ray C, Unger S. Unique challenges of providing bioanalytical support for biological therapeutic pharmacokinetic programs. Bioanalysis. 2011;3(5):509–21.

    CAS  PubMed  Google Scholar 

  43. Kuhn B, Mohr P, Stahl M. Intramolecular hydrogen bonding in medicinal chemistry. J Med Chem. 2010;53(6):2601–11.

    CAS  PubMed  Google Scholar 

  44. Lokey RS. Testing the conformational hypothesis of membrane permeability using cyclic peptide diastereomers. Abstracts of Papers, 232nd ACS National Meeting, San Francisco, CA, United States, Sept 10–14, 2006. 2006:BIOL-167.

  45. Rezai T, Yu B, Millhauser GL, Jacobson MP, Lokey RS. Testing the conformational hypothesis of passive membrane permeability using synthetic cyclic peptide diastereomers. J Am Chem Soc. 2006;128(8):2510–1.

    CAS  PubMed  Google Scholar 

  46. White TR, Renzelman CM, Rand AC, Rezai T, McEwen CM, Gelev VM, et al. On-resin N-methylation of cyclic peptides for discovery of orally bioavailable scaffolds. Nat Chem Biol. 2011;7(11):810–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  47. Alex A, Millan DS, Perez M, Wakenhut F, Whitlock GA. Intramolecular hydrogen bonding to improve membrane permeability and absorption in beyond rule of five chemical space. Med Chem Comm. 2011;2(7):669–74.

    CAS  Google Scholar 

  48. Milletti F. Cell-penetrating peptides: classes, origin, and current landscape. Drug Discov Today. 2012;17(15–16):850–60.

    CAS  PubMed  Google Scholar 

  49. Tressel SL, Koukos G, Tchernychev B, Jacques SL, Covic L, Kuliopulos A. Pharmacology, biodistribution, and efficacy of GPCR-based pepducins in disease models. Methods Mol Biol (N Y, NY, U S). 2011;683:259–75. Cell-Penetrating Peptides.

    CAS  Google Scholar 

  50. Wang J, Shen D, Shen W-C. Preparation, purification, and characterization of a reversibly lipidized desmopressin with potentiated antidiuretic activity. Pharm Res. 1999;16(11):1674–9.

    CAS  PubMed  Google Scholar 

  51. Wang J, Chow D, Heiati H, Shen W-C. Reversible lipidization for the oral delivery of salmon calcitonin. J Control Release. 2003;88(3):369–80.

    CAS  PubMed  Google Scholar 

  52. Wang J, Shen W-C. Gastric retention and stability of lipidized Bowman-Birk protease inhibitor in mice. Int J Pharm. 2000;204(1–2):111–6.

    CAS  PubMed  Google Scholar 

  53. Chae SY, Jin C-H, Shin HJ, Youn YS, Lee S, Lee KC. Preparation, characterization, and application of biotinylated and biotin-PEGylated glucagon-like peptide-1 analogues for enhanced oral delivery. Bioconjugate Chem. 2008;19(1):334–41.

    CAS  Google Scholar 

  54. Clardy-James S, Chepurny OG, Leech CA, Holz GG, Doyle RP. Synthesis, characterization and pharmacodynamics of vitamin-B12-conjugated glucagon-like peptide-1. ChemMedChem. 2013;8(4):582–6.

    PubMed Central  CAS  PubMed  Google Scholar 

  55. Clardy SM, Allis DG, Fairchild TJ, Doyle RP. Vitamin B12 in drug delivery: breaking through the barriers to a B12 bioconjugate pharmaceutical. Expert Opin Drug Deliv. 2011;8(1):127–40.

    CAS  PubMed  Google Scholar 

  56. Shaji J, Patole V. Protein and peptide drug delivery: oral approaches. Indian J Pharm Sci. 2008;70(3):269–77.

    PubMed Central  PubMed  Google Scholar 

  57. Aungst BJ. Intestinal permeation enhancers. J Pharm Sci. 2000;89(4):429–42.

    CAS  PubMed  Google Scholar 

  58. Whitehead K, Karr N, Mitragotri S. Safe and effective permeation enhancers for oral drug delivery. Pharm Res. 2008;25(8):1782–8.

    CAS  PubMed  Google Scholar 

  59. LeCluyse EL, Sutton SC. In vitro models for selection of development candidates. Permeability studies to define mechanisms of absorption enhancement. Adv Drug Deliv Rev. 1997;23(1–3):163–83.

    CAS  Google Scholar 

  60. Wang X, Maher S, Brayden DJ. Restoration of rat colonic epithelium after in situ intestinal instillation of the absorption promoter, sodium caprate. Ther Deliv. 2010;1(1):75–82.

    CAS  PubMed  Google Scholar 

  61. Goldberg M, Gomez-Orellana I. Challenges for the oral delivery of macromolecules. Nat Rev Drug Discov. 2003;2(4):289–95.

    CAS  PubMed  Google Scholar 

  62. Puente XS, Gutierrez-Fernandez A, Ordonez GR, Hillier LW, Lopez-Otin C. Comparative genomic analysis of human and chimpanzee proteases. Genomics. 2005;86(6):638–47.

    CAS  PubMed  Google Scholar 

  63. Woodley JF. Enzymatic barriers for GI peptide and protein delivery. Crit Rev Ther Drug Carrier Syst. 1994;11(2–3):61–95.

    CAS  PubMed  Google Scholar 

  64. Powell MF, Grey H, Gaeta F, Sette A, Colon S. Peptide stability in drug development: a comparison of peptide reactivity in different biological media. J Pharm Sci. 1992;81(8):731–5.

    CAS  PubMed  Google Scholar 

  65. Powell MF, Stewart T, Otvos Jr L, Urge L, Gaeta FCA, Sette A, et al. Peptide stability in drug development. II. Effect of single amino acid substitution and glycosylation on peptide reactivity in human serum. Pharm Res. 1993;10(9):1268–73.

    CAS  PubMed  Google Scholar 

  66. Noto PB, Abbadessa G, Cassone M, Mateo GD, Agelan A, Wade JD, et al. Alternative stabilities of a proline-rich antibacterial peptide in vitro and in vivo. Protein Sci. 2008;17(7):1249–55.

    PubMed Central  CAS  PubMed  Google Scholar 

  67. Eng H, Sharma R, McDonald TS, Landis MS, Stevens BD, Kalgutkar AS. Pharmacokinetics and metabolism studies on the glucagon-like peptide-1 (GLP-1)-derived metabolite GLP-1(9–36)amide in male Beagle dogs. Xenobiotica. 2014;44(9):842–8.

    CAS  PubMed  Google Scholar 

  68. Sharma R, McDonald TS, Eng H, Limberakis C, Stevens BD, Patel S, et al. In vitro metabolism of the glucagon-like peptide-1 (GLP-1)-derived metabolites GLP-1(9–36)amide and GLP-1(28–36)amide in mouse and human hepatocytes. Drug Metab Dispos. 2013;41(12):2148–57.

    CAS  PubMed  Google Scholar 

  69. Adessi C, Soto C. Converting a peptide into a drug: strategies to improve stability and bioavailability. Curr Med Chem. 2002;9(9):963–78.

    CAS  PubMed  Google Scholar 

  70. Linde Y, Ovadia O, Safrai E, Xiang Z, Portillo FP, Shalev DE, et al. Structure-activity relationship and metabolic stability studies of backbone cyclization and N-methylation of melanocortin peptides. Biopolymers. 2008;90(5):671–82.

    PubMed Central  CAS  PubMed  Google Scholar 

  71. Ovadia O, Linde Y, Haskell-Luevano C, Dirain ML, Sheynis T, Jelinek R, et al. The effect of backbone cyclization on PK/PD properties of bioactive peptide-peptoid hybrids: the melanocortin agonist paradigm. Bioorg Med Chem. 2010;18(2):580–9.

    CAS  PubMed  Google Scholar 

  72. Hess S, Linde Y, Ovadia O, Safrai E, Shalev DE, Swed A, et al. Backbone cyclic peptidomimetic melanocortin-4 receptor agonist as a novel orally administrated drug lead for treating obesity. J Med Chem. 2008;51(4):1026–34.

    CAS  PubMed  Google Scholar 

  73. Byk G, Halle D, Zeltser I, Bitan G, Selinger Z, Gilon C. Synthesis and biological activity of NK-1 selective, N-backbone cyclic analogs of the C-terminal hexapeptide of substance P. J Med Chem. 1996;39(16):3174–8.

    CAS  PubMed  Google Scholar 

  74. Pollaro L, Heinis C. Strategies to prolong the plasma residence time of peptide drugs. Med Chem Comm. 2010;1(5):319–24.

    CAS  Google Scholar 

  75. Pisal DS, Kosloski MP, Balu-Iyer SV. Delivery of therapeutic proteins. J Pharm Sci. 2010;99(6):2557–75.

    PubMed Central  CAS  PubMed  Google Scholar 

  76. Sato AK, Viswanathan M, Kent RB, Wood CR. Therapeutic peptides: technological advances driving peptides into development. Curr Opin Biotechnol. 2006;17(6):638–42.

    CAS  PubMed  Google Scholar 

  77. John H, Maronde E, Forssmann W-G, Meyer M, Adermann K. N-terminal acetylation protects glucagon-like peptide GLP-1-(7–34)-amide from DPP-IV-mediated degradation retaining cAMP-and insulin releasing capacity. Eur J Med Res. 2008;13(2):73–8.

    CAS  PubMed  Google Scholar 

  78. Stroemstedt AA, Pasupuleti M, Schmidtchen A, Malmsten M. Evaluation of strategies for improving proteolytic resistance of antimicrobial peptides by using variants of EFK17, an internal segment of LL-37. Antimicrob Agents Chemother. 2009;53(2):593–602.

    CAS  Google Scholar 

  79. Ferdinandi ES, Brazeau P, High K, Procter B, Fennell S, Dubreuil P. Non-clinical pharmacology and safety evaluation of TH9507, a human growth hormone-releasing factor analogue. Basic Clin Pharmacol Toxicol. 2007;100(1):49–58.

    CAS  PubMed  Google Scholar 

  80. Sharman A, Low J. Vasopressin and its role in critical care. Contin Educ Anaesth, Crit Care Pain. 2008;8(4):134–7.

    Google Scholar 

  81. Agerso H, Larsen LS, Riis A, Lovgren U, Karlsson MO, Senderovitz T. Pharmacokinetics and renal excretion of desmopressin after intravenous administration to healthy subjects and renally impaired patients. Br J Clin Pharmacol. 2004;58(4):352–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  82. Harris AG. Somatostatin and somatostatin analogues: pharmacokinetics and pharmacodynamic effects. Gut. 1994;35(3 Suppl):S1–4.

    PubMed Central  CAS  PubMed  Google Scholar 

  83. Chen S, Gfeller D, Buth SA, Michielin O, Leiman PG, Heinis C. Improving binding affinity and stability of peptide ligands by substituting glycines with D-amino acids. Chem Bio Chem. 2013;14(11):1316–22.

    CAS  PubMed  Google Scholar 

  84. Tugyi R, Uray K, Ivan D, Fellinger E, Perkins A, Hudecz F. Partial D-amino acid substitution: improved enzymatic stability and preserved Ab recognition of a MUC2 epitope peptide. Proc Natl Acad Sci U S A. 2005;102(2):413–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  85. Darlak K, Benovitz DE, Spatola AF, Grzonka Z. Dermorphin analogs: resistance to in vitro enzymatic degradation is not always increased by additional D-amino acid substitutions. Biochem Biophys Res Commun. 1988;156(1):125–30.

    CAS  PubMed  Google Scholar 

  86. Rafferty B, Coy DH, Poole S. Pharmacokinetic evaluation of superactive analogues of growth hormone-releasing factor (1–29)-amide. Peptides. 1988;9(1):207–9.

    CAS  PubMed  Google Scholar 

  87. Nattel S, Carlsson L. Innovative approaches to anti-arrhythmic drug therapy. Nat Rev Drug Discov. 2006;5(12):1034–49.

    CAS  PubMed  Google Scholar 

  88. Welch BD, Francis JN, Redman JS, Paul S, Weinstock MT, Reeves JD, et al. Design of a potent D-peptide HIV-1 entry inhibitor with a strong barrier to resistance. J Virol. 2010;84(21):11235–44.

    PubMed Central  CAS  PubMed  Google Scholar 

  89. Verschraegen CF, Westphalen S, Hu W, Loyer E, Kudelka A, Volker P, et al. Phase II study of cetrorelix, a luteinizing hormone-releasing hormone antagonist in patients with platinum-resistant ovarian cancer. Gynecol Oncol. 2003;90(3):552–9.

    CAS  PubMed  Google Scholar 

  90. Heredi-Szabo K, Murphy RF, Lovas S. Is IGnRH-III the most potent GnRH analog containing only natural amino acids that specifically inhibits the growth of human breast cancer cells? J Pept Sci. 2006;12(11):714–20.

    CAS  PubMed  Google Scholar 

  91. Raun K, Hansen BS, Johansen NL, Thogersen H, Madsen K, Ankersen M, et al. Ipamorelin, the first selective growth hormone secretagogue. Eur J Endocrinol. 1998;139(5):552–61.

    CAS  PubMed  Google Scholar 

  92. Gobburu JVS, Agerso H, Jusko WJ, Ynddal L. Pharmacokinetic-pharmacodynamic modeling of ipamorelin, a growth hormone releasing peptide, in human volunteers. Pharm Res. 1999;16(9):1412–6.

    CAS  PubMed  Google Scholar 

  93. Weber SJ, Greene DL, Hruby VJ, Yamamura HI, Porreca F, Davis TP. Whole body and brain distribution of [3H]cyclic [D-Pen2, D-Pen5]enkephalin after intraperitoneal, intravenous, oral and subcutaneous administration. J Pharmacol Exp Ther. 1992;263(3):1308–16.

    CAS  PubMed  Google Scholar 

  94. Tugyi R, Mezo G, Fellinger E, Andreu D, Hudecz F. The effect of cyclization on the enzymatic degradation of herpes simplex virus glycoprotein D derived epitope peptide. J Pept Sci. 2005;11(10):642–9.

    CAS  PubMed  Google Scholar 

  95. Walensky LD, Kung AL, Escher I, Malia TJ, Barbuto S, Wright RD, et al. Activation of apoptosis in vivo by a hydrocarbon-stapled BH3 helix. Science (Washington, DC, U S). 2004;305(5689):1466–70.

    CAS  Google Scholar 

  96. Bernal F, Tyler AF, Korsmeyer SJ, Walensky LD, Verdine GL. Reactivation of the p53 tumor suppressor pathway by a stapled p53 peptide [Erratum to document cited in CA146:397011]. J Am Chem Soc. 2007;129(16):5298.

    CAS  Google Scholar 

  97. Bird GH, Madani N, Perry AF, Princiotto AM, Supko JG, He X, et al. Hydrocarbon double-stapling remedies the proteolytic instability of a lengthy peptide therapeutic. Proc Natl Acad Sci U S A. 2010;107(32):14093–8. S/1-S/8.

    PubMed Central  CAS  PubMed  Google Scholar 

  98. Grigoryev Y. Stapled peptide to enter human testing, but affinity questions remain. Nat Med (N Y, NY, U S). 2013;19(2):120.

    CAS  Google Scholar 

  99. Czock D, Keller F, Seidling HM. Pharmacokinetic predictions for patients with renal impairment: focus on peptides and protein drugs. Br J Clin Pharmacol. 2012;74(1):66–74.

    PubMed Central  CAS  PubMed  Google Scholar 

  100. Verbeeck RK, Musuamba FT. Pharmacokinetics and dosage adjustment in patients with renal dysfunction. Eur J Clin Pharmacol. 2009;65(8):757–73.

    CAS  PubMed  Google Scholar 

  101. Chanson P, Timsit J, Harris AG. Clinical pharmacokinetics of octreotide. Therapeutic applications in patients with pituitary tumours. Clin Pharmacokinet. 1993;25(5):375–91.

    CAS  PubMed  Google Scholar 

  102. Kutz K, Nuesch E, Rosenthaler J. Pharmacokinetics of SMS 201–995 in healthy subjects. Scand J Gastroenterol Suppl. 1986;119:65–72.

    CAS  PubMed  Google Scholar 

  103. Malm-Erjefalt M, Bjoernsdottir I, Vanggaard J, Helleberg H, Larsen U, Oosterhuis B, et al. Metabolism and excretion of the once-daily human glucagon-like peptide-1 analog liraglutide in healthy male subjects and its in vitro degradation by dipeptidyl peptidase IV and neutral endopeptidase. Drug Metab Dispos. 2010;38(11):1944–53.

    CAS  PubMed  Google Scholar 

  104. Hou J, Manaenko A, Hakon J, Hansen-Schwartz J, Tang J, Zhang JH. Liraglutide, a long-acting GLP-1 mimetic, and its metabolite attenuate inflammation after intracerebral hemorrhage. J Cereb Blood Flow Metab. 2012;32(12):2201–10.

    PubMed Central  CAS  PubMed  Google Scholar 

  105. Levy Odile E, Jodka Carolyn M, Ren Shijun S, Mamedova L, Sharma A, Samant M, et al. Novel exenatide analogs with peptidic albumin binding domains: potent anti-diabetic agents with extended duration of action. PLoS One. 2014;9(2):e87704.

    PubMed Central  CAS  PubMed  Google Scholar 

  106. Lindgren J, Refai E, Zaitsev Sergei V, Abrahmsen L, Berggren P-O, Karlstrom AE. A GLP-1 receptor agonist conjugated to an albumin-binding domain for extended half-life. Biopolymers. 2014;102(3):252–9.

    CAS  PubMed  Google Scholar 

  107. Angelini A, Morales-Sanfrutos J, Diderich P, Chen S, Heinis C. Bicyclization and tethering to albumin yields long-acting peptide antagonists. J Med Chem. 2012;55(22):10187–97.

    CAS  PubMed  Google Scholar 

  108. Bronson J, Black A, Dhar TGM, Ellsworth BA, Merritt JR. To market, to market—2012. Annu Rep Med Chem. 2013;48:471–546.

    CAS  Google Scholar 

  109. Baggio LL, Huang Q, Cao X, Drucker DJ. An albumin-exendin-4 conjugate engages central and peripheral circuits regulating murine energy and glucose homeostasis. Gastroenterology. 2008;134(4):1137–47.

    CAS  PubMed  Google Scholar 

  110. Poole RM, Nowlan ML. Albiglutide: first global approval. Drugs. 2014:Ahead of Print.

  111. Pratley RE, Nauck MA, Barnett AH, Feinglos MN, Ovalle F, Harman-Boehm I, et al. Once-weekly albiglutide versus once-daily liraglutide in patients with type 2 diabetes inadequately controlled on oral drugs (HARMONY 7): a randomised, open-label, multicentre, non-inferiority phase 3 study. Lancet Diabetes Endocrinol. 2014;2(4):289–97.

    CAS  PubMed  Google Scholar 

  112. Delaforgea M, Bouille G, Jaouen M, Jankowski CK, Lamouroux C, Bensoussan C. Recognition and oxidative metabolism of cyclodipeptides by hepatic cytochrome P450. Peptides (N Y, NY, U S). 2001;22(4):557–65.

    CAS  Google Scholar 

  113. Wacher VJ, Silverman JA, Zhang Y, Benet LZ. Role of P-glycoprotein and cytochrome P450 3A in limiting oral absorption of peptides and peptidomimetics. J Pharm Sci. 1998;87(11):1322–30.

    CAS  PubMed  Google Scholar 

  114. Pekol T, Daniels JS, Labutti J, Parsons I, Nix D, Baronas E, et al. Human metabolism of the proteasome inhibitor bortezomib: identification of circulating metabolites. Drug Metab Dispos. 2005;33(6):771–7.

    CAS  PubMed  Google Scholar 

  115. Di L, Feng B, Goosen TC, Lai Y, Steyn SJ, Varma MV, et al. A perspective on the prediction of drug pharmacokinetics and disposition in drug research and development. Drug Metab Dispos. 2013;41(12):1975–93.

    CAS  PubMed  Google Scholar 

  116. Wang W, Prueksaritanont T. Prediction of human clearance of therapeutic proteins: simple allometric scaling method revisited. Biopharm Drug Dispos. 2010;31(4):253–63.

    PubMed  Google Scholar 

  117. Mordenti J, Chen SA, Moore JA, Ferraiolo BL, Green JD. Interspecies scaling of clearance and volume of distribution data for five therapeutic proteins. Pharm Res. 1991;8(11):1351–9.

    CAS  PubMed  Google Scholar 

  118. Richter WF, Gallati H, Schiller C-D. Animal pharmacokinetics of the tumor necrosis factor receptor-immunoglobulin fusion protein lenercept and their extrapolation to humans. Drug Metab Dispos. 1999;27(1):21–5.

    CAS  PubMed  Google Scholar 

  119. Grene-Lerouge NAM, Bazin-Redureau MI, Debray M, Scherrmann JMG. Interspecies scaling of clearance and volume of distribution for digoxin-specific Fab. Toxicol Appl Pharmacol. 1996;138(1):84–9.

    CAS  PubMed  Google Scholar 

  120. Mahmood I. Interspecies scaling of protein drugs: prediction of clearance from animals to humans. J Pharm Sci. 2004;93(1):177–85.

    CAS  PubMed  Google Scholar 

  121. Chen T, Mager DE, Kagan L. Interspecies modeling and prediction of human exenatide pharmacokinetics. Pharm Res. 2013;30(3):751–60.

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author would like to thank Karen Atkinson for editing the manuscript; Angela Doran, Angela Wolford, and Amit Kalgutkar for the study on peptide PK prediction; and Larry Tremaine, Tess Wilson, and Charlotte Allerton for their leadership and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Di.

Additional information

Guest Editors: Annette Bak and Weiguo Dai

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di, L. Strategic Approaches to Optimizing Peptide ADME Properties. AAPS J 17, 134–143 (2015). https://doi.org/10.1208/s12248-014-9687-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-014-9687-3

KEY WORDS

Navigation