Skip to main content
Log in

Comparative Pharmacology and Toxicology of Pharmaceuticals in the Environment: Diphenhydramine Protection of Diazinon Toxicity in Danio rerio but Not Daphnia magna

  • Research Article
  • Theme: Pharmaceuticals and Personal Care Products in the Environment
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Pharmaceuticals and other contaminants of emerging concern present unique challenges to environmental risk assessment and management. Fortunately, mammalian pharmacology and toxicology safety data are more readily available for pharmaceuticals than other environmental contaminants. Identifying approaches to read-across such pharmaceutical safety information to non-target species represents a major research need to assess environmental hazards. Here, we tested a biological read-across hypothesis from emergency medicine with common aquatic invertebrate and vertebrate models. In mammals, the antihistamine diphenhydramine (DPH) confers protection from poisoning by acetylcholinesterase inhibition because DPH blocks the acetylcholine receptor. We employed standardized toxicity methods to examine individual and mixture toxicity of DPH and the acetylcholinesterase inhibitor diazinon (DZN) in Daphnia magna (an invertebrate) and Danio rerio (zebrafish, a vertebrate). Though the standardized Fish Embryo Toxicity method evaluates early life stage toxicity of zebrafish (0–3 days post fertilization, dpf), we further evaluated DPH, DZN, and their equipotent mixture during three development stages (0–3, 3–6, 7–10 dpf) in zebrafish embryos. Independent action and concentration addition mixture models and fish plasma modeling were used to assist interpretation of mixture toxicity experiments. Though our primary hypothesis was not confirmed in acute studies with Daphnia magna, DPH conferred a protective effect for acute DZN toxicity to zebrafish when DPH plasma levels were expected to be greater than mammalian therapeutic, but lower than acutely lethal, internal doses. We further observed that timing of developmental exposure influenced the magnitude of DZN and DPH toxicity to zebrafish, which suggests that future zebrafish toxicity studies with pharmaceuticals and pesticides should examine exposure during developmental stages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Brooks BW, Huggett DB, Boxall ABA. Pharmaceuticals and personal care products: research needs for the next decade. Environ Toxicol Chem. 2009;28(12):2469–72.

    Article  CAS  PubMed  Google Scholar 

  2. Brooks BW. Fish on Prozac (and Zoloft): ten years later. Aquat Toxicol. 2014;151:61–7.

    Article  CAS  PubMed  Google Scholar 

  3. Ankley GT, Brooks BW, Huggett DB, Sumpter JP. Repeating history: pharmaceuticals in the environment. Environ Sci Technol. 2007;41(24):8211–7.

    Article  CAS  PubMed  Google Scholar 

  4. Boxall ABA, Rudd MA, Brooks BW, Caldwell DJ, Choi K, Hickmann S, et al. Pharmaceuticals and personal care products in the environment: what are the big questions? Environ Health Perspect. 2012;120(9):1221–9.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Seiler JP. Pharmacodynamic activity of drugs and ecotoxicology—can the two be connected? Toxicol Lett. 2002;131(1–2):105–15.

    Article  CAS  PubMed  Google Scholar 

  6. McVey EA. Regulation of pharmaceuticals in the environment: the USA. In: Brooks BW, Hugget D, editors. Human pharmaceuticals in the environment: current and future perspectives. Emerging topics in ecotoxicology: principles, approaches and perspectives. New York: Springer; 2012. p. 49–61.

  7. Laurenson JP, Bloom RA, Page S, Sadrieh N. Ethinyl estradiol and other human pharmaceutical estrogens in the aquatic environment: a review of recent risk assessment data. AAPS J. 2014;16:299–310.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Brooks BW, Huggett DB, Brain RA, Ankley GT. Risk assessment considerations for veterinary medicines in aquatic systems. In: Henderson K, Coats J, editors. Veterinary Pharmaceuticals in the Environment. American Chemical Society Symposium Series. Washington DC: American Chemical Society; 2009. pp. 205–223.

  9. Gunnarsson L, Jauhiainen A, Kristiansson E, Nerman O, Larsson DGJ. Evolutionary conservation of human drug targets in organisms used for environmental risk assessments. Environ Sci Technol. 2008;42(15):5807–13.

    Article  CAS  PubMed  Google Scholar 

  10. Huggett DB, Cook JC, Ericson JF, Williams RT. A theoretical model for utilizing mammalian pharmacology and safety data to prioritize potential impacts of human pharmaceuticals to fish. Hum Ecol Risk Assess. 2003;9(7):1789–99.

    Article  CAS  Google Scholar 

  11. LaLone CA, Villeneuve DL, Burgoon LD, Russom CL, Helgen HW, Berninger JP, et al. Molecular target sequence similarity as a basis for species extrapolation to assess the ecological risk of chemicals with known modes of action. Aquat Toxicol. 2013;144–145:141–54.

    Article  PubMed  Google Scholar 

  12. Berninger JP, Brooks BW. Leveraging mammalian pharmaceutical toxicology and pharmacology data to predict chronic fish responses to pharmaceuticals. Toxicol Lett. 2010;193(1):69–78.

    Article  CAS  PubMed  Google Scholar 

  13. Roos V, Gunnarsson L, Fick J, Larsson DG, Rudén C. Prioritising pharmaceuticals for environmental risk assessment: towards adequate and feasible first-tier selection. Sci Total Environ. 2012;421–422:102–10.

    Article  PubMed  Google Scholar 

  14. Caldwell DJ, Mastrocco F, Margiotta-Casaluci L, Brooks BW. An integrated approach for prioritizing pharmaceuticals found in the environment for risk assessment, monitoring and advanced research. Chemosphere. 2014;115:4–12.

    Article  CAS  PubMed  Google Scholar 

  15. Connors KA, Du B, Fitzsimmons PN, Hoffman AD, Chambliss CK, Nichols JW, et al. Comparative pharmaceutical metabolism by rainbow trout (Oncorhynchus mykiss) liver S9 fractions. Environ Toxicol Chem. 2013;32(8):1810–8.

    Article  CAS  PubMed  Google Scholar 

  16. Valenti TW, Gould G, Berninger JP, Connors KA, Keele N, Prosser KN, et al. Human therapeutic plasma levels of the selective serotonin reuptake inhibitor (SSRI) sertraline decrease serotonin reuptake transporter binding and shelter-seeking behavior in adult male fathead minnows. Environ Sci Technol. 2012;46:2427–35.

    Article  CAS  PubMed  Google Scholar 

  17. Ankley GT, Bennett RS, Erickson RJ, Hoff DJ, Hornung MW, Johnson RD, et al. Adverse outcome pathways: a conceptual framework to support ecotoxicology research and risk assessment. Environ Toxicol Chem. 2010;29(3):730–41.

    Article  CAS  PubMed  Google Scholar 

  18. Brausch JM, Connors KA, Brooks BW, Rand GM. Human pharmaceuticals in the aquatic environment: a review of recent toxicological studies and considerations for toxicity testing. Rev Environ Contam Toxicol. 2012;218:1–99.

    CAS  PubMed  Google Scholar 

  19. Kolpin DW, Furlong ET, Meyer MT, Thurman EM, Zaugg SD, Barber LB, et al. Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999–2000: a national reconnaissance. Environ Sci Technol. 2002;36(6):1202–11.

    Article  CAS  PubMed  Google Scholar 

  20. Brooks BW, Riley TM, Taylor RD. Water quality of effluent-dominated ecosystems: ecotoxicological, hydrological, and management considerations. Hydrobiologia. 2006;556(1):365–79.

    Article  CAS  Google Scholar 

  21. Backhaus T, Faust M. Predictive environmental risk assessment of chemical mixtures: a conceptual framework. Environ Sci Technol. 2012;46(5):2564–73.

    Article  CAS  PubMed  Google Scholar 

  22. Mohammed FK, Al-Kassim NA, Abdul-Latif AR. Effect of diphenhydramine on organophosphorus insecticide toxicity in mice. Toxicology. 1989;58(1):91–5.

    Article  Google Scholar 

  23. Bird SB, Gaspari RJ, Lee WJ, Dickson EW. Diphenhydramine as a protective agent in a rat model of acute, lethal organophosphate poisoning. Acad Emerg Med. 2002;9(12):1369–72.

    Article  PubMed  Google Scholar 

  24. Clemmons RM, Meyer DJ, Sundlof SF, Rappaport JJ, Fossler ME, Hubbell J, et al. Correction of organophosphate-induced neuromuscular blockade by diphenhydramine. Am J Vet Res. 1984;45(10):2167–9.

    CAS  PubMed  Google Scholar 

  25. Du B, Perez-Hurtado P, Brooks BW, Chambliss CK. Evaluation of an isotope dilution liquid chromatography tandem mass spectrometry method for pharmaceuticals in fish. J Chromatogr A. 2012;1253:177–83.

    Article  CAS  PubMed  Google Scholar 

  26. Berninger JP, Du B, Connors KA, Eytcheson SA, Kolkmeier MA, Prosser KN, et al. Effects of the antihistamine diphenhydramine on selected aquatic organisms. Environ Toxicol Chem. 2011;30(9):2065–72.

    Article  CAS  PubMed  Google Scholar 

  27. US EPA. Methods for measuring the acute toxicity of effluents and receiving waters to freshwater and marine organisms. Washington, DC: US Environmental Protection Agency; 2002.

    Google Scholar 

  28. American Public Health Association, American Water Works Association, Water Environment Foundation. Standard methods for the examination of water and wastewater. 20th ed. Washington, DC: American Public Health Association; 1998.

    Google Scholar 

  29. U.S. Environmental Protection Agency. 10-day chronic toxicity test using Daphnia magna or Daphnia pulex. Compendium of ERT Standard Operating Protocols, SOP 2028. Edison: Office of Solid Waste and Emergency Response; 1994.

    Google Scholar 

  30. Dzialowski EM, Turner PK, Brooks BW. Physiological and reproductive effects of beta adrenergic receptor antagonists in Daphnia magna. Arch Environ Contam Toxicol. 2006;50(4):503–10.

    Article  CAS  PubMed  Google Scholar 

  31. Hemming JM, Turner PK, Brooks BW, Waller WT, La Point TW. Assessment of toxicity reduction in wastewater effluent flowing through a treatment wetland using Pimephales promelas, Ceriodaphnia dubia, and Vibrio fischeri. Arch Environ Contam Toxicol. 2002;42(1):9–16.

    Article  CAS  PubMed  Google Scholar 

  32. OECD. Test No. 236: Fish Embryo Acute Toxicity (FET) Test. In: OECD Guidelines for the Testing of Chemicals, Section 2: Effects on Biotic Systems; Organisation for Economic Co-operation and Development, Paris, France. doi:10.1787/9789264203709-en.

  33. Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF. Stages of embryonic development of the zebrafish. Dev Dynam. 1995;203(3):253–310.

    Article  CAS  Google Scholar 

  34. Faust M, Altenburger R, Backhaus T, Bödeker W, Scholze M, Grimme LH. Predictive assessment of the aquatic toxicity of multiple chemical mixtures. J Environ Qual. 2000;29(4):1063–8.

    Article  CAS  Google Scholar 

  35. Overmyer JP, Smith PF, Kellock KA, Kwon J-W, Armbrust KL. Assessment of the toxicological interaction of sertraline with cholinesterase inhibiting insecticides in aquatic insects using the black fly, Simulium vittatum IS-7. Environ Toxicol. 2010;25(1):28–37.

    CAS  PubMed  Google Scholar 

  36. US EPA. Short-term methods for estimating the chronic toxicity of effluents and receiving waters to freshwater organisms. Washington, D.C: Office of Research and Development, US Environmental Protection Agency; 2002.

    Google Scholar 

  37. Zar JH. Biostatistical analysis. 5th ed. Upper Saddle River: Prentice Hall; 2010.

    Google Scholar 

  38. Williams ES, Berninger JP, Brooks BW. Application of chemical toxicity distributions to ecotoxicology data requirements under REACH. Environ Toxicol Chem. 2011;30(8):1943–54.

    Article  CAS  PubMed  Google Scholar 

  39. Brooks BW, Ankley GT, Hobson JF, Lazorchak JM, Meyerhoff RD, Solomon KR. Assessing the aquatic hazards of veterinary medicines. Effects of veterinary medicines in the environment. Boca Raton: CRC; 2008. p. 97–128.

    Google Scholar 

  40. Fernandez-Casalderrey A, Ferrando MD, Andreu-Moliner E. Chronic toxicity of diazinon to Daphnia magna: effects on survival, reproduction and growth. Toxicol Environ Chem. 1995;49(1–2):25–32.

    Article  CAS  Google Scholar 

  41. Kretschmann A, Ashauer R, Hitzfeld K, Spaak P, Hollender J, Escher BI. Mechanistic toxicodynamic model for receptor-mediated toxicity of diazoxon, the active metabolite of diazinon, in Daphnia magna. Environ Sci Technol. 2011;45(11):4980–7.

    Article  CAS  PubMed  Google Scholar 

  42. Sánchez M, Ferrando MD, Sancho E, Andreu-Moliner E. Evaluation of a Daphnia magna renewal life-cycle test method with diazinon. J Environ Sci Health A. 1998;33(6):785–97.

    Article  Google Scholar 

  43. Buser CC, Spaak P, Wolinska J. Disease and pollution alter Daphnia taxonomic and clonal structure in experimental assemblages. Freshw Biol. 2012;57(9):1865–74.

    Article  Google Scholar 

  44. Rosi-Marshall EJ. Pharmaceuticals suppress algal growth and microbial respiration and alter bacterial communities in stream biofilms. Ecol Appl. 2013;23(3):583–93.

    Article  PubMed  Google Scholar 

  45. Meinertz JR, Schreier TM, Bernardy JA, Franz JL. Chronic toxicity of diphenhydramine hydrochloride and erythromycin thiocyanate to Daphnia, Daphnia magna, in a continuous exposure test system. Bull Environ Contam Toxicol. 2010;85(5):447–51.

    Article  CAS  PubMed  Google Scholar 

  46. Backhaus T, Altenburger R, Boedeker W, Faust M, Scholze M, Grimme LH. Predictability of the toxicity of a multiple mixture of dissimilarly acting chemicals to Vibrio fischeri. Environ Toxicol Chem. 2000;19(9):2348–56.

    Article  CAS  Google Scholar 

  47. Fitzsimmons PN, Fernandez JD, Hoffman AD, Butterworth BC, Nichols JW. Branchial elimination of superhydrophobic organic compounds by rainbow trout (Oncorhynchus mykiss). Aquat Toxicol. 2001;55(1–2):23–34.

    Article  CAS  PubMed  Google Scholar 

  48. McRobb FM, Sahagún V, Kufareva I, Abagyan R. In silico analysis of the conservation of human toxicity and endocrine disruption targets in aquatic species. Environ Sci Technol. 2014;48(3):1964–72.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Rand-Weaver M, Margiotta-Casaluci L, Patel A, Panter GH, Owen SF, Sumpter JP. The read-across hypothesis and environmental risk assessment of pharmaceuticals. Environ Sci Technol. 2013;47(20):11384–95.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Yu S, Wages MR, Cai Q, Maul JD, Cobb GP. Lethal and sublethal effects of three insecticides on two developmental stages of Xenopus laevis and comparison with other amphibians. Environ Toxicol Chem. 2013;32(9):2056–64.

    Article  CAS  PubMed  Google Scholar 

  51. Hamm JT, Hinton DE. The role of development and duration of exposure to the embryotoxicity of diazinon. Aquat Toxicol. 2000;48(4):403–18.

    Article  CAS  PubMed  Google Scholar 

  52. Hamm JT, Wilson BW, Hinton DE. Increasing uptake and bioactivation with development positively modulate diazinon toxicity in early life stage medaka (Oryzias latipes). Toxicol Sci. 2001;61(2):304–13.

    Article  CAS  PubMed  Google Scholar 

  53. Mattingly CJ, Toscano WA. Posttranscriptional silencing of cytochrome P4501A1 (CYP1A1) during zebrafish (Danio rerio) development. Dev Dynam. 2001;222(4):645–54.

    Article  CAS  Google Scholar 

  54. Otte JC, Schmidt AD, Hollert H, Braunbeck T. Spatio-temporal development of CYP1 activity in early life-stages of zebrafish (Danio rerio). Aquat Toxicol. 2010;100(1):38–50.

    Article  CAS  PubMed  Google Scholar 

  55. Goldstone JV, McArthur AG, Kubota A, Zanette J, Parente T, Jösson ME, et al. Identification and developmental expression of the full complement of cytochrome P450 genes in zebrafish. BMC Genomics. 2010;1471–2164.

  56. Gunnarsson L. Kristiansson E. Larsson DGJ. Environmental comparative pharmacology: theory and application. In: Brooks BW, Hugget D, editors. Human pharmaceuticals in the environment: current and future perspectives. Emerging topics in ecotoxicology: principles, approaches and perspectives. New York: Springer; 2012. p. 49–61

  57. Connors KA, Du B, Fitzsimmons PN, Chambliss CK, Nichols JW, Brooks BW. Enantiomer-specific in vitro biotransformation of select pharmaceuticals in rainbow Trout (Oncorhynchus mykiss). Chirality. 2013;25:763–7.

    Article  CAS  PubMed  Google Scholar 

  58. Bar-Ilan O, Louis KM, Yang SP, Pedersen JA, Hamers RJ, Peterson RE, et al. Titanium dioxide nanoparticles produce phototoxicity in the developing zebrafish. Nanotoxicology. 2012;6(6):670–9.

    Article  CAS  PubMed  Google Scholar 

  59. Huang H, Huang C, Wang L, Ye X, Bai C, Simonich M, et al. Toxicity, uptake kinetics and behavior assessment in zebrafish embryos following exposure to perfluorooctanesulphonicacid (PFOS). Aquat Toxicol. 2010;98:139–47.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Villalobos SA, Hamm JT, Teh SJ, Hinton DE. Thiobencarb-induced embryotoxicity in medaka (Oryzias latipes): stage-specific toxicity and the protective role of the chorion. Aquat Toxicol. 2000;48:309–26.

    Article  CAS  PubMed  Google Scholar 

  61. Embry MR, Belanger SE, Braunbeck TA, Galay-Burgos M, Halder M, Hinton DE, et al. The fish embryo toxicity test as an animal alternative method in hazard and risk assessment and scientific research. Aquat Toxicol. 2010;97(2):79–87.

  62. Rodrigues WC, Castro C, Catbagan P, Moore C, Wang G. Immunoassay screening of diphenhydramine (Benadryl®) in urine and blood using a newly developed assay. J Anal Toxicol. 2012;36(2):123–9.

    Article  CAS  PubMed  Google Scholar 

  63. Peitsaro N. Identification of zebrafish histamine H1, H2 and H3 receptors and effects of histaminergic ligands on behavior. Biochem Pharmacol. 2007;73(8):1205–14.

    Article  CAS  PubMed  Google Scholar 

  64. Hsieh DJ-Y. Zebrafish M muscarinic acetylcholine receptor: cloning, pharmacological characterization, expression patterns and roles in embryonic bradycardia. Br J Pharmacol. 2002;137(6):782–92.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Wang Y, Takai R, Yoshioka H, Shirabe K. Characterization and expression of serotonin transporter genes in zebrafish. Tohoku J Exp Med. 2006;208(3):267–74.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the C. Gus Glasscock, Jr. Endowed Fund for Excellence in Environmental Sciences grant to LAK, the SETAC/EA Jeff Black Fellowship Award to LAK, and the Department of Environmental Science at Baylor University. We also thank SP Haddad, KA Connors, GN Saari, and WC Scott for laboratory assistance, and Dr. Jone Corrales for comments on an earlier draft of this manuscript. Please contact the corresponding author for raw data from this study.

Conflict of Interest

None to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bryan W. Brooks.

Additional information

Guest Editors: James P. Laurenson, Raanan A. Bloom, and Nakissa Sadrieh

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kristofco, L.A., Du, B., Chambliss, C.K. et al. Comparative Pharmacology and Toxicology of Pharmaceuticals in the Environment: Diphenhydramine Protection of Diazinon Toxicity in Danio rerio but Not Daphnia magna . AAPS J 17, 175–183 (2015). https://doi.org/10.1208/s12248-014-9677-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-014-9677-5

KEY WORDS

Navigation