Skip to main content

Advertisement

Log in

Co-Delivery of Autoantigen and B7 Pathway Modulators Suppresses Experimental Autoimmune Encephalomyelitis

  • Research Article
  • Theme: Nanoparticles in Vaccine Delivery
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Autoimmune diseases such as multiple sclerosis (MS) are characterized by the breakdown of immune tolerance to autoantigens. Targeting surface receptors on immune cells offers a unique strategy for reprogramming immune responses in autoimmune diseases. The B7 signaling pathway was targeted using adaptations of soluble antigen array (SAgA) technology achieved by covalently linking B7-binding peptides and disease causing autoantigen (proteolipid peptide (PLP)) to hyaluronic acid (HA). We hypothesized that co-delivery of a B7-binding peptide and autoantigen would suppress experimental autoimmune encephalomyelitis (EAE), a murine model of MS. Three independent B7-targeted SAgAs were created containing peptides to either inhibit or potentially stimulate the B7 signaling pathway. Surprisingly, all SAgAs were found to suppress EAE disease symptoms. Altered cytokine expression was observed in primary splenocytes isolated from SAgA-treated mice, indicating that SAgAs with different B7-binding peptides may suppress EAE through different immunological mechanisms. This antigen-specific immunotherapy using SAgAs can successfully suppress EAE through co-delivery of autoantigen and peptides targeting with the B7 signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

HA:

Hyaluronic acid

SAgA:

Soluble antigen array

PLP:

Proteolipid peptide

B7AP:

B7 antisense peptide

CD80-CAP:

CD80 competitive antagonist peptide

SAgAPLP:LABL :

Soluble antigen array co-grafted with PLP and LABL peptides

SAgAPLP:B7AP :

Soluble antigen array co-grafted with PLP and B7AP peptides

SAgAPLP:CD80-CAP :

Soluble antigen array co-grafted with PLP and CD80-CAP peptides

SAgAPLP:sF2 :

Soluble antigen array co-grafted with PLP and sF2 peptides

REFERENCES

  1. Fletcher JM, Lalor SJ, Sweeney CM, Tubridy N, Mills KH. T cells in multiple sclerosis and experimental autoimmune encephalomyelitis. Clin Exp Immunol. 2010;162(1):1–11.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Ransohoff RM, Brown MA. Innate immunity in the central nervous system. J Clin Invest. 2012;122(4):1164–71.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Amor S, Puentes F, Baker D, Van Der Valk P. Inflammation in neurodegenerative diseases. Immunology. 2010;129(2):154–69.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Feldmann M, Steinman L. Design of effective immunotherapy for human autoimmunity. Nature. 2005;435(7042):612–9.

    Article  CAS  PubMed  Google Scholar 

  5. Bates D. Treatment effects of immunomodulatory therapies at different stages of multiple sclerosis in short-term trials. Neurology. 2011;76:S14–25.

    Article  CAS  PubMed  Google Scholar 

  6. Miller SD, Turley DM, Podojil JR. Antigen-specific tolerance strategies for the prevention and treatment of autoimmune disease. Nat Rev Immunol. 2007;7(9):665–77.

    Article  CAS  PubMed  Google Scholar 

  7. Langer-Gould A, Steinman L. Progressive multifocal leukoencephalopathy and multiple sclerosis: lessons from natalizumab. Curr Neurol Neurosci Rep. 2006;6(3):253–8.

    Article  CAS  PubMed  Google Scholar 

  8. Kindt TJ, Goldsby RA, Osborne BA, Kuby J. Kuby immunology. 6th ed. New York: W.H. Freeman and Company; 2007.

    Google Scholar 

  9. Gonsette RE. Self-tolerance in multiple sclerosis. Acta Neurol Belg. 2012;112(2):133–40.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Barnett MH, Sutton I. The pathology of multiple sclerosis: a paradigm shift. Curr Opin Neurol. 2006;19(3):242–7.

    Article  PubMed  Google Scholar 

  11. Bromley SK, Iaboni A, Davis SJ, Whitty A, Green JM, Shaw AS, et al. The immunological synapse and CD28-CD80 interactions. Nat Immunol. 2001;2(12):1159–66.

    Article  CAS  PubMed  Google Scholar 

  12. Sharpe AH, Freeman GJ. The B7-CD28 superfamily. Nat Rev Immunol. 2002;2(2):116–26.

    Article  CAS  PubMed  Google Scholar 

  13. Chittasupho C, Siahaan TJ, Vines CM, Berkland C. Autoimmune therapies targeting costimulation and emerging trends in multivalent therapeutics. Ther Deliv. 2011;2(7):873–89.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Badawi AH, Siahaan TJ. Immune modulating peptides for the treatment and suppression of multiple sclerosis. Clin Immunol. 2012;144(2):127–38.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Chittasupho C, Sestak J, Shannon L, Siahaan TJ, Vines CM, Berkland C. Hyaluronic acid graft polymers displaying peptide antigen modulate dendritic cell response in vitro. Mol Pharm. 2013;11(1):367–73. doi: 10.1021/mp4003909.

  16. Sabatos-Peyton CA, Verhagen J, Wraith DC. Antigen-specific immunotherapy of autoimmune and allergic diseases. Curr Opin Immunol. 2010;22(5):609–15.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Yao S, Zhu Y, Chen L. Advances in targeting cell surface signalling molecules for immune modulation. Nat Rev Drug Discov. 2013;12(2):130–46.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Chen J, He Q, Zhang R, Chu Y, Wang Y, Liu Q, et al. Allogenic donor splenocytes pretreated with antisense peptide against B7 prolong cardiac allograft survival. Clin Exp Immunol. 2004;138(2):245–50.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Srinivasan M, Lu D, Eri R, Brand DD, Haque A, Blum JS. CD80 binding polyproline helical peptide inhibits T cell activation. J Biol Chem. 2005;280(11):10149–55.

    Article  CAS  PubMed  Google Scholar 

  20. Dudhgaonkar SP, Janardhanam SB, Kodumudi KN, Srinivasan M. CD80 blockade enhance glucocorticoid-induced leucine zipper expression and suppress experimental autoimmune encephalomyelitis. J Immunol. 2009;183(11):7505–13.

    Article  CAS  PubMed  Google Scholar 

  21. Srinivasan M, Gienapp IE, Stuckman SS, Rogers CJ, Jewell SD, Kaumaya PT, et al. Suppression of experimental autoimmune encephalomyelitis using peptide mimics of CD28. J Immunol. 2002;169(4):2180–8.

    Article  CAS  PubMed  Google Scholar 

  22. Kobayashi N, Kobayashi H, Gu L, Malefyt T, Siahaan TJ. Antigen-specific suppression of experimental autoimmune encephalomyelitis by a novel bifunctional peptide inhibitor. J Pharmacol Exp Ther. 2007;322(2):879–86.

    Article  CAS  PubMed  Google Scholar 

  23. Murray JS, Oney S, Page JE, Kratochvil-Stava A, Hu Y, Makagiansar IT, et al. Suppression of type 1 diabetes in NOD mice by bifunctional peptide inhibitor: modulation of the immunological synapse formation. Chem Biol Drug Des. 2007;70(3):227–36.

    Article  CAS  PubMed  Google Scholar 

  24. Sestak J, Mullins M, Northrup L, Thati S, Forrest ML, Siahaan TJ, et al. Single-step grafting of aminooxy-peptides to hyaluronan: a simple approach to multifunctional therapeutics for experimental autoimmune encephalomyelitis. J Control Release. 2013;168(3):334–40.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Sestak JO, Sullivan BP, Thati S, Northrup L, Hartwell B, Antunez L, et al. Codelivery of antigen and an immune cell adhesion inhibitor is necessary for efficacy of soluble antigen arrays in experimental autoimmune encephalomyelitis. Mol Ther Methods Clin Dev. 2014. doi:10.1038/mtm.2014.8.

  26. Manikwar P, Kiptoo P, Badawi AH, Büyüktimkin B, Siahaan TJ. Antigen-specific blocking of CD4-Specific immunological synapse formation using BPI and current therapies for autoimmune diseases. Med Res Rev. 2012;32(4):727–64.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Badawi AH, Kiptoo P, Wang W-T, Choi I-Y, Lee P, Vines CM, et al. Suppression of EAE and prevention of blood–brain barrier breakdown after vaccination with novel bifunctional peptide inhibitor. Neuropharmacology. 2012;62(4):1874–81.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Ridwan R, Kiptoo P, Kobayashi N, Weir S, Hughes M, Williams T, et al. Antigen-specific suppression of experimental autoimmune encephalomyelitis by a novel bifunctional peptide inhibitor: structure optimization and pharmacokinetics. J Pharmacol Exp Ther. 2010;332(3):1136–45.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Constantinescu CS, Farooqi N, O’Brien K, Gran B. Experimental autoimmune encephalomyelitis (EAE) as a model for multiple sclerosis (MS). Br J Pharmacol. 2011;164(4):1079–106.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Yao YF, Zhou YM, Xiang JB, Gu XD, Cai D. Inhibition of arterial allograft intimal hyperplasia using recipient dendritic cells pretreated with B7 antisense peptide. Clin Dev Immunol. 2012;2012:892687.

    Article  PubMed Central  PubMed  Google Scholar 

  31. Fukumoto T, Torigoe N, Kawabata S, Murakami M, Uede T, Nishi T, et al. Peptide mimics of the CTLA4-binding domain stimulate T-cell proliferation. Nat Biotechnol. 1998;16(3):267–70.

    Article  CAS  PubMed  Google Scholar 

  32. Lutterotti A, Yousef S, Sputtek A, Sturner KH, Stellmann JP, Breiden P, et al. Antigen-specific tolerance by autologous myelin peptide-coupled cells: a phase 1 trial in multiple sclerosis. Sci Transl Med. 2013;5(188):188ra75.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Bar-Or A, Vollmer T, Antel J, Arnold DL, Bodner CA, Campagnolo D, et al. Induction of antigen-specific tolerance in multiple sclerosis after immunization with DNA encoding myelin basic protein in a randomized, placebo-controlled phase 1/2 trial. Arch Neurol. 2007;64(10):1407–15.

    Article  PubMed  Google Scholar 

  34. Kang Y, Xu L, Wang B, Chen A, Zheng G. Cutting edge: immunosuppressant as adjuvant for tolerogenic immunization. J Immunol. 2008;180(8):5172–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Kang Y, Zhao J, Liu Y, Chen A, Zheng G, Yu Y, et al. FK506 as an adjuvant of tolerogenic DNA vaccination for the prevention of experimental autoimmune encephalomyelitis. J Gene Med. 2009;11(11):1064–70.

    Article  CAS  PubMed  Google Scholar 

  36. Cousens LP, Su Y, McClaine E, Li X, Terry F, Smith R, et al. Application of IgG-derived natural Treg epitopes (IgG Tregitopes) to antigen-specific tolerance induction in a murine model of type 1 diabetes. J Diabetes Res. 2013;2013:621693.

    Article  PubMed Central  PubMed  Google Scholar 

  37. Eri R, Kodumudi KN, Summerlin DJ, Srinivasan M. Suppression of colon inflammation by CD80 blockade: evaluation in two murine models of inflammatory bowel disease. Inflamm Bowel Dis. 2008;14(4):458–70.

    Article  PubMed  Google Scholar 

  38. Deppong CM, Bricker TL, Rannals BD, Van Rooijen N, Hsieh CS, Green JM. CTLA4Ig inhibits effector T cells through regulatory T cells and TGF-beta. J Immunol. 2013;191(6):3082–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Ward FJ, Dahal LN, Wijesekera SK, Abdul-Jawad SK, Kaewarpai T, Xu H, et al. The soluble isoform of CTLA-4 as a regulator of T-cell responses. Eur J Immunol. 2013;43(5):1274–85.

    Article  CAS  PubMed  Google Scholar 

  40. Yamamoto T, Hattori M, Yoshida T. Induction of T-cell activation or anergy determined by the combination of intensity and duration of T-cell receptor stimulation, and sequential induction in an individual cell. Immunology. 2007;121(3):383–91.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Petitto JM, Streit WJ, Huang Z, Butfiloski E, Schiffenbauer J. Interleukin-2 gene deletion produces a robust reduction in susceptibility to experimental autoimmune encephalomyelitis in C57BL/6 mice. Neurosci Lett. 2000;285(1):66–70.

    Article  CAS  PubMed  Google Scholar 

  42. Rodgers JM, Miller SD. Cytokine control of inflammation and repair in the pathology of multiple sclerosis. Yale J Biol Med. 2012;85(4):447–68.

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Lambrecht BN, Kool M, Willart MA, Hammad H. Mechanism of action of clinically approved adjuvants. Curr Opin Immunol. 2009;21(1):23–9.

    Article  CAS  PubMed  Google Scholar 

  44. Peek LJ, Middaugh CR, Berkland C. Nanotechnology in vaccine delivery. Adv Drug Deliv Rev. 2008;60(8):915–28.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the NIH (1R56AI091996-01A1), KINBRE (P20 RR016475/P20 GM103418), American Foundation for Pharmaceutical Education (AFPE) Pre-Doctoral Fellowship in Clinical Pharmaceutical Science, and the Takeru Higuchi Graduate Fellowship (University of Kansas). In addition, the authors thank the laboratories of C. Russell Middaugh and David Volkin for use of laboratory equipment and Lorena Antunez, Cavan Kalonia, and Brian Kaiser for their contributions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cory Berkland.

Additional information

Guest Editor: Aliasger Salem

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Figure 1

The molecular weight of each SAgA was calculated from GPC data. (A) The retention time of each SAgA was used to determine the molecular weight as compared to a (B) pullulan polymer standard curve. Results shown are an average from triplicate injections of a single batch preparation. All samples had a RSD ≤ 0.01. (DOCX 32 kb)

Supplemental Figure 2

SAgAPLP:sF2 was analyzed for subvisible particulate formation at a concentration of 0.1 mg/ml in PBS using micoflow imaging (MFI). Representative images of insoluble aggregates from 25 to 70 μm equivalent circular diameter are shown. (DOCX 1558 kb)

Supplemental Figure 3

ICAM-1 and B7-targeted SAgAs were found to reduce disease incidence in EAE mice. EAE was induced on day zero, and mice were treated on days four, seven, and ten with a dose of SAgA equivaent to 200 nMol PLP. Treatments of HA were administered at a dose equivalent of the SAgAs, 29 nMol. EAE disease incidence was evaluated such that disease free animals maintained a clinical score <1. In all the SAgA treatment groups, over half of the animals remained disease free over the course of the study, while in both negative control groups all animals became diseased. (n = 6 mice per group) (DOCX 152 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Northrup, L., Sestak, J.O., Sullivan, B.P. et al. Co-Delivery of Autoantigen and B7 Pathway Modulators Suppresses Experimental Autoimmune Encephalomyelitis. AAPS J 16, 1204–1213 (2014). https://doi.org/10.1208/s12248-014-9671-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-014-9671-y

KEY WORDS

Navigation