Skip to main content

Advertisement

Log in

Design and Evaluation of Thioalkylated Mannose-Modified Dendrimer (G3)/α-Cyclodextrin Conjugates as Antigen-Presenting Cell-Selective siRNA Carriers

  • Research Article
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

To design and evaluate the potential use of thioalkylated mannose-modified dendrimer (generation 3; G3) conjugates with α-cyclodextrin (Man-S-α-CDE (G3)) as novel antigen-presenting cell (APC)-selective siRNA carriers, we investigated the RNAi effects of siRNA complexes with Man-S-α-CDEs (G3). Man-S-α-CDE (G3, average degree of substitution of mannose (DSM) 4)/siRNA complex had the potent RNAi effects in both NR8383 cells, a rat alveolar macrophage cell line, and JAWSII cells, a mouse dendritic cell line, through adequate physicochemical properties, mannose receptor (MR)-mediated cellular uptake, and efficient phagosomal escape of the siRNA complex. In addition, cytotoxic activities of the siRNA complexes with α-CDE (G3, DS2) and Man-S-α-CDE (G3, DSM4) were almost negligible up to a charge ratio of 100 (carrier/siRNA). Taken together, these results suggest that Man-S-α-CDE (G3, DSM4) has the potential for a novel APC-selective siRNA carrier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998;391:806–11.

    Article  PubMed  CAS  Google Scholar 

  2. Oh YK, Park TG. siRNA delivery systems for cancer treatment. Adv Drug Deliv Rev. 2009;61:850–62.

    Article  PubMed  CAS  Google Scholar 

  3. Watts JK, Corey DR. Clinical status of duplex RNA. Bioorg Med Chem Lett. 2010;20:3203–7.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Song E, Lee SK, Wang J, Ince N, Ouyang N, Min J, et al. RNA interference targeting Fas protects mice from fulminant hepatitis. Nat Med. 2003;9:347–51.

    Article  PubMed  CAS  Google Scholar 

  5. Zhou J, Rossi JJ. Aptamer-targeted cell-specific RNA interference. Silence. 2010;1:4.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Pack DW, Hoffman AS, Pun S, Stayton PS. Design and development of polymers for gene delivery. Nat Rev Drug Discov. 2005;4:581–93.

    Article  PubMed  CAS  Google Scholar 

  7. Whitehead KA, Langer R, Anderson DG. Knocking down barriers: advances in siRNA delivery. Nat Rev Drug Discov. 2009;8:129–38.

    Article  PubMed  CAS  Google Scholar 

  8. Xiao B, Wang X, Qiu Z, Ma J, Zhou L, Wan Y, et al. A dual-functionally modified chitosan derivative for efficient liver-targeted gene delivery. J Biomed Mater Res A. 2013;101:1888–97.

    Article  PubMed  Google Scholar 

  9. Diebold SS, Plank C, Cotten M, Wagner E, Zenke M. Mannose receptor-mediated gene delivery into antigen presenting dendritic cells. Somat Cell Mol Genet. 2002;27:65–74.

    Article  PubMed  CAS  Google Scholar 

  10. East L, Isacke CM. The mannose receptor family. Biochim Biophys Acta. 2002;1572:364–86.

    Article  PubMed  CAS  Google Scholar 

  11. Sato Y, Beutler E. Binding, internalization, and degradation of mannose-terminated glucocerebrosidase by macrophages. J Clin Invest. 1993;91:1909–17.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Kim N, Jiang D, Jacobi AM, Lennox KA, Rose SD, Behlke MA, et al. Synthesis and characterization of mannosylated pegylated polyethylenimine as a carrier for siRNA. Int J Pharm. 2012;427:123–33.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Jain A, Agarwal A, Majumder S, Lariya N, Khaya A, Agrawal H, et al. Mannosylated solid lipid nanoparticles as vectors for site-specific delivery of an anti-cancer drug. J Control Release. 2010;148:359–67.

    Article  PubMed  CAS  Google Scholar 

  14. Jain SK, Gupta Y, Jain A, Saxena AR, Khare P, Jain A. Mannosylated gelatin nanoparticles bearing an anti-HIV drug didanosine for site-specific delivery. Nanomedicine. 2008;4:41–8.

    Article  PubMed  CAS  Google Scholar 

  15. Jiang HL, Kang ML, Quan JS, Kang SG, Akaike T, Yoo HS, et al. The potential of mannosylated chitosan microspheres to target macrophage mannose receptors in an adjuvant-delivery system for intranasal immunization. Biomaterials. 2008;29:1931–9.

    Article  PubMed  CAS  Google Scholar 

  16. Abdou S, Collomb J, Sallas F, Marsura A, Finance C. β-Cyclodextrin derivatives as carriers to enhance the antiviral activity of an antisense oligonucleotide directed toward a coronavirus intergenic consensus sequence. Arch Virol. 1997;142:1585–602.

    Article  PubMed  CAS  Google Scholar 

  17. Croyle MA, Roessler BJ, Hsu CP, Sun R, Amidon GL. β Cyclodextrins enhance adenoviral-mediated gene delivery to the intestine. Pharm Res. 1998;15:1348–55.

    Article  PubMed  CAS  Google Scholar 

  18. Freeman DJ, Niven RW. The influence of sodium glycocholate and other additives on the in vivo transfection of plasmid DNA in the lungs. Pharm Res. 1996;13:202–9.

    Article  PubMed  CAS  Google Scholar 

  19. Uekama K, Otagiri M. Cyclodextrins in drug carrier systems. Crit Rev Ther Drug Carrier Syst. 1987;3:1–40.

    PubMed  CAS  Google Scholar 

  20. Kihara F, Arima H, Tsutsumi T, Hirayama F, Uekama K. Effects of structure of polyamidoamine dendrimer on gene transfer efficiency of the dendrimer conjugate with α-cyclodextrin. Bioconjug Chem. 2002;13:1211–9.

    Article  PubMed  CAS  Google Scholar 

  21. Kihara F, Arima H, Tsutsumi T, Hirayama F, Uekama K. In vitro and in vivo gene transfer by an optimized α-cyclodextrin conjugate with polyamidoamine dendrimer. Bioconjug Chem. 2003;14:342–50.

    Article  PubMed  CAS  Google Scholar 

  22. Hayashi Y, Mori Y, Yamashita S, Motoyama K, Higashi T, Jono H, et al. Potential use of lactosylated dendrimer (G3)/α-cyclodextrin conjugates as hepatocyte-specific siRNA carriers for the treatment of familial amyloidotic polyneuropathy. Mol Pharm. 2012;9:1645–53.

    Article  PubMed  CAS  Google Scholar 

  23. Wada K, Arima H, Tsutsumi T, Chihara Y, Hattori K, Hirayama F, et al. Improvement of gene delivery mediated by mannosylated dendrimer/α-cyclodextrin conjugates. J Control Release. 2005;104:397–413.

    Article  PubMed  CAS  Google Scholar 

  24. Tsutsumi T, Hirayama F, Uekama K, Arima H. Evaluation of polyamidoamine dendrimer/α-cyclodextrin conjugate (generation 3, G3) as a novel carrier for small interfering RNA (siRNA). J Control Release. 2007;119:349–59.

    Article  PubMed  CAS  Google Scholar 

  25. Chiu YL, Ali A, Chu CY, Cao H, Rana TM. Visualizing a correlation between siRNA localization, cellular uptake, and RNAi in living cells. Chem Biol. 2004;11:1165–75.

    Article  PubMed  CAS  Google Scholar 

  26. Arima H, Tsutsumi T, Yoshimatsu A, Ikeda H, Motoyama K, Higashi T, et al. Inhibitory effect of siRNA complexes with polyamidoamine dendrimer/α-cyclodextrin conjugate (generation 3, G3) on endogenous gene expression. Eur J Pharm Sci. 2011;44:375–84.

    Article  PubMed  CAS  Google Scholar 

  27. Kedmi R, Ben-Arie N, Peer D. The systemic toxicity of positively charged lipid nanoparticles and the role of Toll-like receptor 4 in immune activation. Biomaterials. 2010;31:6867–75.

    Article  PubMed  CAS  Google Scholar 

  28. Xiao W, Sun YX, Cheng H, Zeng X, Zhang XZ, Zhuo RX. Inhibition of enhanced green fluorescent protein expression by (dextran-hexamethylenediisocyanate)-g-polyethylenimine/siRNA complexes. J Microencapsul. 2010;27:447–52.

    Article  PubMed  CAS  Google Scholar 

  29. Diaz-Moscoso A, Guilloteau N, Bienvenu C, Mendez-Ardoy A, Jimenez Blanco JL, Benito JM, et al. Mannosyl-coated nanocomplexes from amphiphilic cyclodextrins and pDNA for site-specific gene delivery. Biomaterials. 2011;32:7263–73.

    Article  PubMed  CAS  Google Scholar 

  30. Kelly C. Mannosylated liposomes for targeted delivery of siRNA to alveolar macrophages. in Proceedings of the 7th British Society for Gene Therapy Annual Conference. London, UK; 2010.

  31. Bird L. Innate immunity: cargo-driven phagosome fate. Nat Rev Immunol. 2004;4:494.

    Article  CAS  Google Scholar 

  32. Arima H, Kihara F, Hirayama F, Uekama K. Enhancement of gene expression by polyamidoamine dendrimer conjugates with α-, β-, and γ-cyclodextrins. Bioconjug Chem. 2001;12:476–84.

    Article  PubMed  CAS  Google Scholar 

  33. Hillaireau H. P. C. Nanocarriers' entry into the cell: relevance to drug delivery. Cel Mol Life Sci. 2009;66:2873–96.

    Article  CAS  Google Scholar 

  34. Sahay G, Alakhova DY, Kabanov AV. Endocytosis of nanomedicines. J Control Release. 2010;145:182–95.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  35. Boskovic J, Arnold JN, Stilion R, Gordon S, Sim RB, Rivera-Calzada A, et al. Structural model for the mannose receptor family uncovered by electron microscopy of Endo180 and the mannose receptor. J Biol Chem. 2006;281:8780–7.

    Article  PubMed  CAS  Google Scholar 

  36. Galustian C, Park CG, Chai W, Kiso M, Bruening SA, Kang YS, et al. High and low affinity carbohydrate ligands revealed for murine SIGN-R1 by carbohydrate array and cell binding approaches, and differing specificities for SIGN-R3 and langerin. Int Immunol. 2004;16:853–66.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by Grant-in-Aid for Scientific Research (C) from Japan Society for the Promotion of Science (23590045).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hidetoshi Arima.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure 1

FAB-MS (a) and 1H-NMR (b) spectra of 1-α-d-mannosyl-oxypropyl-thio-ethyl-carboxylic acid (PPTX 138 kb)

Supplementary Figure 2

1H-NMR spectra of Man-S-α-CDEs (G3) in D2O (PPTX 73.3 kb)

Supplementary Figure 3

Intracellular distribution of TRITC-Man-S-α-CDE (G3, DSM4) after transfection with siRNA complex in NR8383 cells. TRITC-Man-S-α-CDE (G3, DSM4)/siRNA complex was incubated for 1 h. The amount of siRNA was 10 μg. The charge ratio of carrier/siRNA was 50/1 (PPTX 1.65 MB )

Supplementary Figure 4

Effects of Man-S-α-CDE (G3, DSM4)/siRNA complex on expression of INF-β mRNA in NR8383 cells (PPTX 49.1 kb)

Supplementary Figure 5

Proposed scheme for APC-selective RNAi efficiency of Man-S-α-CDE (G3, DSM4)/siRNA complex (PPTX 107 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Motoyama, K., Mitsuyasu, R., Akao, C. et al. Design and Evaluation of Thioalkylated Mannose-Modified Dendrimer (G3)/α-Cyclodextrin Conjugates as Antigen-Presenting Cell-Selective siRNA Carriers. AAPS J 16, 1298–1308 (2014). https://doi.org/10.1208/s12248-014-9665-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-014-9665-9

KEY WORD

Navigation