Skip to main content

Advertisement

Log in

A Network Modeling Approach for the Spatial Distribution and Structure of Bone Mineral Content

  • Research Article
  • Published:
The AAPS Journal Aims and scope Submit manuscript

ABSTRACT

This study aims to develop a spatial model of bone for quantitative assessments of bone mineral density and microarchitecture. A spatially structured network model for bone microarchitecture was systematically investigated. Bone mineral-forming foci were distributed radially according to the cumulative normal distribution, and Voronoi tessellation was used to obtain edges representing bone mineral lattice. Methods to simulate X-ray images were developed. The network model recapitulated key features of real bone and contained spongy interior regions resembling trabecular bone that transitioned seamlessly to densely mineralized, compact cortical bone-like microarchitecture. Model-simulated imaging profiles were similar to patients’ X-ray images. The morphometric metrics were concordant with microcomputed tomography results for real bone. Simulations comparing normal and diseased bone of 20–30 to 70–80 year-olds demonstrated the method’s effectiveness for modeling osteoporosis. The novel spatial model may be useful for pharmacodynamic simulations of bone drugs and for modeling imaging data in clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

REFERENCES

  1. Foundation IO. Facts and statistics: International Osteoporosis Foundation 2013. http://www.iofbonehealth.org/facts-statistics-category-14.

  2. Johnell O, Kanis JA. An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos Int J Established Result Cooperation Eur Found Osteoporos Nat Osteoporos Found USA. 2006;17(12):1726–33. PubMed PMID: 16983459.

    Article  CAS  Google Scholar 

  3. Kanis JA. Assessment of osteoporosis at the primary health care level: report of a WHO Scientific Group. Sheffield, UK: World Health Organization; 2007.

    Google Scholar 

  4. Dennison E, Mohamed MA, Cooper C. Epidemiology of osteoporosis. Rheum Dis Clin N Am. 2006;32(4):617–29.

    Article  Google Scholar 

  5. Burge R, Dawson-Hughes B, Solomon DH, Wong JB, King A, Tosteson A. Incidence and economic burden of osteoporosis-related fractures in the United States, 2005–2025. J Bone Miner Res Off J Am Soc Bone Miner Res. 2007;22(3):465–75.

    Article  Google Scholar 

  6. Seeman E, Delmas PD. Bone quality—the material and structural basis of bone strength and fragility. Engl J Med. 2006;354(21):2250–61. PubMed PMID: 16723616.

    Article  CAS  Google Scholar 

  7. Weinstock-Guttman B, Gallagher E, Baier M, Green L, Feichter J, Patrick K, et al. Risk of bone loss in men with multiple sclerosis. Mult Scler. 2004;10(2):170–5. PubMed PMID: 15124763.

    Article  PubMed  Google Scholar 

  8. Pazianas M, Abrahamsen B. Safety of bisphosphonates. Bone. 2011;49(1):103–10. PubMed PMID: 21236370.

    Article  CAS  PubMed  Google Scholar 

  9. Almazrooa SA, Woo SB. Bisphosphonate and nonbisphosphonate-associated osteonecrosis of the jaw: a review. J Am Dent Assoc. 2009;140(7):864–75. PubMed PMID: 19571050.

    Article  CAS  PubMed  Google Scholar 

  10. Khosla S, Burr D, Cauley J, Dempster DW, Ebeling PR, Felsenberg D, et al. Bisphosphonate-associated osteonecrosis of the jaw: report of a task force of the American Society for Bone and Mineral Research. J Bone Miner Res Off J Am Soc Bone Miner Res. 2007;22(10):1479–91. PubMed PMID: 17663640.

    Article  Google Scholar 

  11. Ruggiero SL, Dodson TB, Assael LA, Landesberg R, Marx RE, Mehrotra B, et al. American Association of Oral and Maxillofacial Surgeons position paper on bisphosphonate-related osteonecrosis of the jaws—2009 update. J Oral Maxillofac Surg Off J Am Assoc Oral Maxillofac Surg. 2009;67(5 Suppl):2–12. PubMed PMID: 19371809.

    Google Scholar 

  12. Meier RP, Perneger TV, Stern R, Rizzoli R, Peter RE. Increasing occurrence of atypical femoral fractures associated with bisphosphonate use. Arch Intern Med. 2012;172(12):930–6. PubMed PMID: 22732749.

    Article  PubMed  Google Scholar 

  13. Park-Wyllie LY, Mamdani MM, Juurlink DN, Hawker GA, Gunraj N, Austin PC, et al. Bisphosphonate use and the risk of subtrochanteric or femoral shaft fractures in older women. JAMA J Am Med Assoc. 2011;305(8):783–9. PubMed PMID: 21343577.

    Article  CAS  Google Scholar 

  14. Cremers SC, Pillai G, Papapoulos SE. Pharmacokinetics/pharmacodynamics of bisphosphonates: use for optimisation of intermittent therapy for osteoporosis. Clin Pharmacokinet. 2005;44(6):551–70. PubMed PMID: 15932344.

    Article  CAS  PubMed  Google Scholar 

  15. Pillai G, Gieschke R, Goggin T, Barrett J, Worth E, Steimer JL. Population pharmacokinetics of ibandronate in Caucasian and Japanese healthy males and postmenopausal females. Int J Clin Pharmacol Ther. 2006;44(12):655–67.

    Article  CAS  PubMed  Google Scholar 

  16. Girish V, Vijayalakshmi A. Affordable image analysis using NIH Image/ImageJ. Indian J Cancer. 2004;41(1):47. PubMed PMID: 15105580.

    CAS  PubMed  Google Scholar 

  17. Hartig SM. Chapter 14: Unit 14.15. Basic image analysis and manipulation in ImageJ. In: Frederick M Ausubel [et al] (eds.). Current protocols in molecular biology. 2013. PubMed PMID: 23547012.

  18. Doube M, Klosowski MM, Arganda-Carreras I, Cordelieres FP, Dougherty RP, Jackson JS, et al. BoneJ: Free and extensible bone image analysis in ImageJ. Bone. 2010;47(6):1076–9.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Hildebrand T, Laib A, Muller R, Dequeker J, Ruegsegger P. Direct three-dimensional morphometric analysis of human cancellous bone: microstructural data from spine, femur, iliac crest, and calcaneus. J Bone Miner Res Off J Am Soc Bone Miner Res. 1999;14(7):1167–74. PubMed PMID: 10404017.

    Article  CAS  Google Scholar 

  20. Locke M. Structure of long bones in mammals. J Morphol. 2004;262(2):546–65. PubMed PMID: 15376271.

    Article  PubMed  Google Scholar 

  21. Looker AC, Borrud LG, Hughes JP, Fan B, Shepherd JA, Melton LJ, III. Lumbar spine and proximal femur bone mineral density, bone mineral content, and bone area: United States, 2005–2008. Data from the National Health and Nutrition Examination Survey (NHANES). In: Statistics NCfH, editor. Vital Health Stat Hyattsville, MD: Centers for Disease Control and Prevention; 2012.

  22. Moon HS, Won YY, Kim KD, Ruprecht A, Kim HJ, Kook HK, et al. The three-dimensional microstructure of the trabecular bone in the mandible. Surg Radiol Anat SRA. 2004;26(6):466–73. PubMed PMID: 15146293.

    Article  CAS  Google Scholar 

  23. Keyak JH, Fourkas MG, Meagher JM, Skinner HB. Validation of an automated method of three-dimensional finite element modelling of bone. J Biomed Eng. 1993;15(6):505–9. PubMed PMID: 8277756.

    Article  CAS  PubMed  Google Scholar 

  24. Viceconti M, Davinelli M, Taddei F, Cappello A. Automatic generation of accurate subject-specific bone finite element models to be used in clinical studies. J Biomech. 2004;37(10):1597–605. PubMed PMID: 15336935.

    Article  PubMed  Google Scholar 

  25. Morin C, Hellmich C. Mineralization-driven bone tissue evolution follows from fluid-to-solid phase transformations in closed thermodynamic systems. J Theor Biol. 2013;335:185–97. PubMed PMID: 23810933.

    Article  PubMed  Google Scholar 

  26. Morin C, Hellmich C, Henits P. Fibrillar structure and elasticity of hydrating collagen: a quantitative multiscale approach. J Theor Biol. 2013;317:384–93. PubMed PMID: 23032219.

    Article  CAS  PubMed  Google Scholar 

  27. Vuong J, Hellmich C. Bone fibrillogenesis and mineralization: quantitative analysis and implications for tissue elasticity. J Theor Biol. 2011;287:115–30. PubMed PMID: 21835186.

    Article  PubMed  Google Scholar 

  28. Fritsch A, Hellmich C, Dormieux L. Ductile sliding between mineral crystals followed by rupture of collagen crosslinks: experimentally supported micromechanical explanation of bone strength. J Theor Biol. 2009;260(2):230–52. PubMed PMID: 19497330.

    Article  CAS  PubMed  Google Scholar 

  29. Chappard D, Legrand E, Haettich B, Chales G, Auvinet B, Eschard JP, et al. Fractal dimension of trabecular bone: comparison of three histomorphometric computed techniques for measuring the architectural two-dimensional complexity. J Pathol. 2001;195(4):515–21. PubMed PMID: 11745685.

    Article  CAS  PubMed  Google Scholar 

  30. Lespessailles E, Roux JP, Benhamou CL, Arlot ME, Eynard E, Harba R, et al. Fractal analysis of bone texture on os calcis radiographs compared with trabecular microarchitecture analyzed by histomorphometry. Calcif Tissue Int. 1998;63(2):121–5. PubMed PMID: 9685516.

    Article  CAS  PubMed  Google Scholar 

  31. Pillai G, Gieschke R, Goggin T, Jacqmin P, Schimmer RC, Steimer JL. A semimechanistic and mechanistic population PK-PD model for biomarker response to ibandronate, a new bisphosphonate for the treatment of osteoporosis. Br J Clin Pharmacol. 2004;58(6):618–31.

    Article  PubMed Central  PubMed  Google Scholar 

  32. Cremers S, Papapoulos S. Pharmacology of bisphosphonates. Bone. 2011;49(1):42–9. PubMed PMID: 21281748.

    Article  CAS  PubMed  Google Scholar 

  33. Lin JH. Bisphosphonates: a review of their pharmacokinetic properties. Bone. 1996;18(2):75–85. PubMed PMID: 8833200.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

Support from the National Multiple Sclerosis Society (RG4836-A-5) to the Ramanathan laboratory is gratefully acknowledged.

CONFLICT OF INTEREST

There are no conflicts of interest related to the work in the manuscript.

CONFIDENTIALITY

Use of the information in this manuscript for commercial, noncommercial, research, or purposes other than peer review not permitted prior to publication without the expressed written permission from the author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Murali Ramanathan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, H., Zhang, A., Bone, L. et al. A Network Modeling Approach for the Spatial Distribution and Structure of Bone Mineral Content. AAPS J 16, 478–487 (2014). https://doi.org/10.1208/s12248-014-9585-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-014-9585-8

KEY WORDS

Navigation