Skip to main content

Advertisement

Log in

Effect of PEG Surface Conformation on Anticancer Activity and Blood Circulation of Nanoemulsions Loaded with Tocotrienol-Rich Fraction of Palm Oil

  • Research Article
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Tocotrienol-rich fraction of palm oil, which contains the isomers of vitamin E, was shown to possess potent anticancer activity against mammary adenocarcinoma cell lines. Its clinical use, however, is limited by poor oral bioavailability and short half-life. Previously, we developed tocotrienol-rich lipid nanoemulsions for intravenous administration. The objective of this study was to investigate the effect of surface grafted polyethylene glycol (PEG) on the properties of the nanoemulsions. PEGylation was achieved by the addition of equimolar PEG groups using poloxamer or 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino(polyethylene glycol)2000] (PEG2000-DSPE). The effect of PEG surface topography on the antiproliferative activity of nanoemulsions against mammary adenocarcinoma cells, their susceptibility to protein adsorption, and its effect on blood hemolysis and circulation time was investigated. Nanoemulsions PEGylated with poloxamer or PEG2000-DSPE were stable under physical stress. Poloxamer nanoemulsion, however, displayed higher uptake and potency against MCF-7 tumor cells in 2D and 3D culture and increased hemolytic effect and susceptibility to IgG adsorption, which was reflected in its rapid clearance and short circulation half-life (1.7 h). Conversely, PEGylation with PEG2000-DSPE led to a 7-fold increase in mean residence time (12.3 h) after IV injection in rats. Reduced activity in vitro and improved circulation time suggested strong shielding of plasma proteins from the droplets. Differences between the nanoemulsions were attributed to polymer imbibitions and the differences in PEG conformation and density on the surface of the droplets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sylvester PW, Kaddoumi A, Nazzal S, El Sayed KA. The value of tocotrienols in the prevention and treatment of cancer. J Am Coll Nutr. 2010;29(3 Suppl):324S–33S.

    PubMed  CAS  Google Scholar 

  2. Nesaretnam K, Meganathan P, Veerasenan SD, Selvaduray KR. Tocotrienols and breast cancer: the evidence to date. Genes Nutr. 2012;7(1):3–9. doi:10.1007/s12263-011-0224-z.

    Article  PubMed  CAS  Google Scholar 

  3. Kannappan R, Gupta SC, Kim JH, Aggarwal BB. Tocotrienols fight cancer by targeting multiple cell signaling pathways. Genes Nutr. 2012;7(1):43–52. doi:10.1007/s12263-011-0220-3.

    Article  PubMed  CAS  Google Scholar 

  4. Yap SP, Yuen KH, Lim AB. Influence of route of administration on the absorption and disposition of alpha-, gamma- and delta-tocotrienols in rats. J Pharm Pharmacol. 2003;55(1):53–8. doi:10.1211/002235702450.

    Article  PubMed  CAS  Google Scholar 

  5. Sen CK, Khanna S, Roy S. Tocotrienols: vitamin E beyond tocopherols. Life Sci. 2006;78(18):2088–98. doi:10.1016/j.lfs.2005.12.001.

    Article  PubMed  CAS  Google Scholar 

  6. Alqahtani S, Alayoubi A, Nazzal S, Sylvester P, Kaddoumi A. Nonlinear absorption kinetics of self-emulsifying drug delivery systems (SEDDS) containing tocotrienols as lipophilic molecules: in vivo and in vitro studies. AAPS J. 2013;1-12. doi:10.1208/s12248-013-9481-7.

  7. Goppert TM, Muller RH. Plasma protein adsorption of Tween 80- and poloxamer 188-stabilized solid lipid nanoparticles. J Drug Target. 2003;11(4):225–31. doi:10.1080/10611860310001615956QPXLM2E4EJ3LJL2B.

    Article  PubMed  Google Scholar 

  8. Le UM, Cui Z. Long-circulating gadolinium-encapsulated liposomes for potential application in tumor neutron capture therapy. Int J Pharm. 2006;312(1–2):105–12. doi:10.1016/j.ijpharm.2006.01.002.

    Article  PubMed  CAS  Google Scholar 

  9. Soundararajan A, Bao A, Phillips WT, Perez R, Goins BA. [186Re]Liposomal doxorubicin (Doxil): in vitro stability, pharmacokinetics, imaging and biodistribution in a head and neck squamous cell carcinoma xenograft model. Nucl Med Biol. 2009;36(5):515–24.

    Article  PubMed  CAS  Google Scholar 

  10. Moghimi SM, Szebeni J. Stealth liposomes and long circulating nanoparticles: critical issues in pharmacokinetics, opsonization and protein-binding properties. Prog Lipid Res. 2003;42(6):463–78.

    Article  PubMed  CAS  Google Scholar 

  11. Maruyama K, Yuda T, Okamoto A, Kojima S, Suginaka A, Iwatsuru M. Prolonged circulation time in vivo of large unilamellar liposomes composed of distearoyl phosphatidylcholine and cholesterol containing amphipathic poly(ethylene glycol). Biochim Biophys Acta. 1992;1128(1):44–9.

    Article  PubMed  CAS  Google Scholar 

  12. Moghimi SM. Prolonging the circulation time and modifying the body distribution of intravenously injected polystyrene nanospheres by prior intravenous administration of poloxamine-908. A ‘hepatic-blockade’ event or manipulation of nanosphere surface in vivo? Biochim Biophys Acta Gen Subj. 1997;1336(1):1–6.

    Article  CAS  Google Scholar 

  13. Alayoubi A, Nazzal M, Sylvester PW, Nazzal S. “Vitamin E” fortified parenteral lipid emulsions: Plackett–Burman screening of primary process and composition parameters. Drug Dev Ind Pharm. 2012. doi:10.3109/03639045.2012.682223.

    Google Scholar 

  14. Alayoubi AY, Anderson JF, Satyanarayanajois SD, Sylvester PW, Nazzal S. Concurrent delivery of tocotrienols and simvastatin by lipid nanoemulsions potentiates their antitumor activity against human mammary adenocarcinoma cells. Eur J Pharm Sci. 2013;48(3):385–92.

    Article  CAS  Google Scholar 

  15. Yan F, Zhang C, Zheng Y, Mei L, Tang L, Song C, et al. The effect of poloxamer 188 on nanoparticle morphology, size, cancer cell uptake, and cytotoxicity. Nanomedicine. 2010;6(1):170–8. doi:10.1016/j.nano.2009.05.004S1549-9634(09)00097-5.

    Article  PubMed  CAS  Google Scholar 

  16. Harvie P, Wong FMP, Bally MB. Use of poly(ethylene glycol)–lipid conjugates to regulate the surface attributes and transfection activity of lipid–DNA particles. J Pharm Sci. 2000;89(5):652–63. doi:10.1002/(sici)1520-6017(200005)89:5<652::aid-jps11>3.0.co;2-h.

    Article  PubMed  CAS  Google Scholar 

  17. Han J, Davis SS, Washington C. Physical properties and stability of two emulsion formulations of propofol. Int J Pharm. 2001;215(1–2):207–20.

    Article  PubMed  CAS  Google Scholar 

  18. Xu A, Yao M, Xu G, Ying J, Ma W, Li B, et al. A physical model for the size-dependent cellular uptake of nanoparticles modified with cationic surfactants. Int J Nanomedicine. 2012;7:3547–54. doi:10.2147/IJN.S32188ijn-7-3547.

    PubMed  CAS  Google Scholar 

  19. Chithrani BD, Ghazani AA, Chan WC. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett. 2006;6(4):662–8. doi:10.1021/nl052396o.

    Article  PubMed  CAS  Google Scholar 

  20. Win KY, Feng SS. Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs. Biomaterials. 2005;26(15):2713–22. doi:10.1016/j.biomaterials.2004.07.050.

    Article  PubMed  CAS  Google Scholar 

  21. Huang J, Bu L, Xie J, Chen K, Cheng Z, Li X, et al. Effects of nanoparticle size on cellular uptake and liver MRI with polyvinylpyrrolidone-coated iron oxide nanoparticles. ACS Nano. 2010;4(12):7151–60. doi:10.1021/nn101643u.

    Article  PubMed  CAS  Google Scholar 

  22. Jumaa M, Müller BW. Development of a novel parenteral formulation for tetrazepam using a lipid emulsion. Drug Dev Ind Pharm. 2001;27(10):1115–21. doi:10.1081/DDC-100108374.

    Article  PubMed  CAS  Google Scholar 

  23. Bock TK, Müller BW. A novel assay to determine the hemolytic activity of drugs incorporated in colloidal carrier systems. Pharm Res. 1994;11(4):589–91. doi:10.1023/a:1018987120738.

    Article  PubMed  CAS  Google Scholar 

  24. Jumaa M, Kleinebudde P, Müller BW. Physicochemical properties and hemolytic effect of different lipid emulsion formulations using a mixture of emulsifiers. Pharm Acta Helv. 1999;73(6):293–301. doi:10.1016/s0031-6865(99)00003-5.

    Article  CAS  Google Scholar 

  25. Abuasal B, Thomas S, Sylvester PW, Kaddoumi A. Development and validation of a reversed-phase HPLC method for the determination of gamma-tocotrienol in rat and human plasma. Biomed Chromatogr. 2011;25(5):621–7. doi:10.1002/bmc.1493.

    Article  PubMed  CAS  Google Scholar 

  26. Gao K, Sun J, Liu K, Liu X, He Z. Preparation and characterization of a submicron lipid emulsion of docetaxel: submicron lipid emulsion of docetaxel. Drug Dev Ind Pharm. 2008;34(11):1227–37. doi:10.1080/03639040802005057.

    Article  PubMed  CAS  Google Scholar 

  27. Han J, Davis SS, Papandreou C, Melia CD, Washington C. Design and evaluation of an emulsion vehicle for paclitaxel. I. Physicochemical properties and plasma stability. Pharm Res. 2004;21(9):1573–80. doi:10.1023/b:pham.0000041451.70367.21.

    Article  PubMed  CAS  Google Scholar 

  28. Ilium L, Davis SS, Wilson CG, Thomas NW, Frier M, Hardy JG. Blood clearance and organ deposition of intravenously administered colloidal particles. The effects of particle size, nature and shape. Int J Pharm. 1982;12(2–3):135–46.

    Article  Google Scholar 

  29. Ishii F, Nagasaka Y. Interaction between erythrocytes and free phospholipids as an emulsifying agent in fat emulsions or drug carrier emulsions for intravenous injections. Colloids Surf B: Biointerfaces. 2004;37(1–2):43–7. doi:10.1016/j.colsurfb.2004.05.016.

    Article  PubMed  CAS  Google Scholar 

  30. Bjerregaard S, Wulf-Andersen L, Stephens RW, Røge Lund L, Vermehren C, Söderberg I, et al. Sustained elevated plasma aprotinin concentration in mice following intraperitoneal injections of w/o emulsions incorporating aprotinin. J Control Release. 2001;71(1):87–98. doi:10.1016/s0168-3659(00)00370-9.

    Article  PubMed  CAS  Google Scholar 

  31. El-Hariri LM, Marriott C, Martin GP. The mitigating effects of phosphatidylcholines on bile salt- and lysophosphatidylcholine-induced membrane damage. J Pharm Pharmacol. 1992;44(8):651–4. doi:10.1111/j.2042-7158.1992.tb05487.x.

    Article  PubMed  CAS  Google Scholar 

  32. Forster D, Washington C, Davis SS. Toxicity of solubilized and colloidal amphotericin B formulations to human erythrocytes. J Pharm Pharmacol. 1988;40(5):325–8. doi:10.1111/j.2042-7158.1988.tb05260.x.

    Article  PubMed  CAS  Google Scholar 

  33. Weingarten C, Santos Magalhaes NS, Baszkin A, Benita S, Seiller M. Interactions of a non-ionic ABA copolymer surfactant with phospholipid monolayers: possible relevance to emulsion stabilization. Int J Pharm. 1991;75(2–3):171–9. doi:10.1016/0378-5173(91)90191-p.

    Article  CAS  Google Scholar 

  34. Lechmann T, Reinhart WH. The non-ionic surfactant Poloxamer 188 (RheothRx®) increases plasma and whole blood viscosity. Clin Hemorheol Microcirc. 1998;18(1):31–6.

    PubMed  CAS  Google Scholar 

  35. Barenholz Y. Doxil(R)–the first FDA-approved nano-drug: lessons learned. J Control Release. 2012;160(2):117–34. doi:10.1016/j.jconrel.2012.03.020S0168-3659(12)00230-1.

    Article  PubMed  CAS  Google Scholar 

  36. Goppert TM, Muller RH. Protein adsorption patterns on poloxamer- and poloxamine-stabilized solid lipid nanoparticles (SLN). Eur J Pharm Biopharm. 2005;60(3):361–72. doi:10.1016/j.ejpb.2005.02.006.

    Article  PubMed  Google Scholar 

  37. Gref R, Luck M, Quellec P, Marchand M, Dellacherie E, Harnisch S, et al. ‘Stealth’ corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption. Colloids Surf B Biointerfaces. 2000;18(3–4):301–13.

    Article  PubMed  CAS  Google Scholar 

  38. Schmidt S, Muller RH. Plasma protein adsorption patterns on surfaces of amphotericin B-containing fat emulsions. Int J Pharm. 2003;254(1):3–5.

    Article  PubMed  CAS  Google Scholar 

  39. Patil S, Sandberg A, Heckert E, Self W, Seal S. Protein adsorption and cellular uptake of cerium oxide nanoparticles as a function of zeta potential. Biomaterials. 2007;28(31):4600–7.

    Article  PubMed  CAS  Google Scholar 

  40. Lu X, Howard MD, Mazik M, Eldridge J, Rinehart JJ, Jay M, et al. Nanoparticles containing anti-inflammatory agents as chemotherapy adjuvants: optimization and in vitro characterization. AAPS J. 2008;10(1):133–40. doi:10.1208/s12248-008-9013-z.

    Article  PubMed  CAS  Google Scholar 

  41. Gessner A, Waicz R, Lieske A, Paulke B, Mader K, Muller RH. Nanoparticles with decreasing surface hydrophobicities: influence on plasma protein adsorption. Int J Pharm. 2000;196(2):245–9.

    Article  PubMed  CAS  Google Scholar 

  42. Perry JL, Reuter KG, Kai MP, Herlihy KP, Jones SW, Luft JC, et al. PEGylated PRINT nanoparticles: the impact of PEG density on protein binding, macrophage association, biodistribution, and pharmacokinetics. Nano Lett. 2012;12(10):5304–10. doi:10.1021/nl302638g.

    Article  PubMed  CAS  Google Scholar 

  43. Zhang G, Zeng X, Li P. Nanomaterials in cancer-therapy drug delivery system. J Biomed Nanotechnol. 2013;9(5):741–50. doi:10.1166/jbn.2013.1583.

    Article  PubMed  CAS  Google Scholar 

  44. Tsoneva I, Iordanov I, Berger AJ, Tomov T, Nikolova B, Mudrov N, et al. Electrodelivery of drugs into cancer cells in the presence of poloxamer 188. J Biomed Biotechnol. 2010;2010:11. doi:10.1155/2010/314213.

    Article  Google Scholar 

  45. Alayoubi A, Kanthala S, Satyanarayanajois SD, Anderson JF, Sylvester PW, Nazzal S. Stability and in vitro antiproliferative activity of bioactive “Vitamin E” fortified parenteral lipid emulsions. Colloids Surf B: Biointerfaces. 2013;103(0):23–30.

    Article  PubMed  CAS  Google Scholar 

  46. Wang SH, Lee CW, Chiou A, Wei PK. Size-dependent endocytosis of gold nanoparticles studied by three-dimensional mapping of plasmonic scattering images. J Nanobiotechnology. 2010;8:33. doi:10.1186/1477-3155-8-331477-3155-8-33.

    Article  PubMed  CAS  Google Scholar 

  47. Zhang Y, Tang L, Sun L, Bao J, Song C, Huang L, et al. A novel paclitaxel-loaded poly(ε-caprolactone)/poloxamer 188 blend nanoparticle overcoming multidrug resistance for cancer treatment. Acta Biomater. 2010;6(6):2045–52.

    Article  PubMed  CAS  Google Scholar 

  48. Mei L, Zhang Y, Zheng Y, Tian G, Song C, Yang D, et al. A novel docetaxel-loaded poly (epsilon-caprolactone)/pluronic F68 nanoparticle overcoming multidrug resistance for breast cancer treatment. Nanoscale Res Lett. 2009;4(12):1530–9. doi:10.1007/s11671-009-9431-61556-276X-4-1530.

    Article  PubMed  CAS  Google Scholar 

  49. Yamada KM, Cukierman E. Modeling tissue morphogenesis and cancer in 3D. Cell. 2007;130(4):601–10. doi:10.1016/j.cell.2007.08.006.

    Article  PubMed  CAS  Google Scholar 

  50. dit Faute MA, Laurent L, Ploton D, Poupon MF, Jardillier JC, Bobichon H. Distinctive alterations of invasiveness, drug resistance and cell-cell organization in 3D-cultures of MCF-7, a human breast cancer cell line, and its multidrug resistant variant. Clin Exp Metastasis. 2002;19(2):161–8.

    Article  Google Scholar 

  51. Schutte M, Fox B, Baradez MO, Devonshire A, Minguez J, Bokhari M, et al. Rat primary hepatocytes show enhanced performance and sensitivity to acetaminophen during three-dimensional culture on a polystyrene scaffold designed for routine use. Assay Drug Dev Technol. 2011;9(5):475–86. doi:10.1089/adt.2011.0371.

    Article  PubMed  CAS  Google Scholar 

  52. Knight E, Murray B, Carnachan R, Przyborski S. Alvetex(R): polystyrene scaffold technology for routine three dimensional cell culture. Methods Mol Biol. 2011;695:323–40. doi:10.1007/978-1-60761-984-0_20.

    Article  PubMed  CAS  Google Scholar 

  53. Katza E, Hadlington-Boothb W, Fauvinc D, Rettenbergerb P. Incorporating the extracellular matrix: new opportunities in cancer research. Development. 2007;134(23):4177–86.

    Article  Google Scholar 

  54. Reinnervate. Routine assessment of cancer cell cytotoxicity in a novel three dimensional culture assay. Application note 2 2013.

  55. Shirode AB, Sylvester PW. Synergistic anticancer effects of combined gamma-tocotrienol and celecoxib treatment are associated with suppression in Akt and NFkappaB signaling. Biomed Pharmacother. 2010;64(5):327–32. doi:10.1016/j.biopha.2009.09.018.

    Article  PubMed  CAS  Google Scholar 

  56. Bachawal SV, Wali VB, Sylvester PW. Enhanced antiproliferative and apoptotic response to combined treatment of gamma-tocotrienol with erlotinib or gefitinib in mammary tumor cells. BMC Cancer. 2010;10:84. doi:10.1186/1471-2407-10-84.

    Article  PubMed  Google Scholar 

  57. Wali VB, Sylvester PW. Synergistic antiproliferative effects of gamma-tocotrienol and statin treatment on mammary tumor cells. Lipids. 2007;42(12):1113–23. doi:10.1007/s11745-007-3102-0.

    Article  PubMed  CAS  Google Scholar 

  58. Moghimi SM, Hunter AC. Poloxamers and poloxamines in nanoparticle engineering and experimental medicine. Trends Biotechnol. 2000;18(10):412–20.

    Article  PubMed  CAS  Google Scholar 

  59. Woodle MC, Storm G. Long circulating liposomes: old drugs, new therapeutics. Austin: Landes; 1998.

  60. Wang R, Xiao R, Zeng Z, Xu L, Wang J. Application of poly(ethylene glycol)-distearoylphosphatidylethanolamine (PEG-DSPE) block copolymers and their derivatives as nanomaterials in drug delivery. Int J Nanomedicine. 2012;7:4185–98. doi:10.2147/IJN.S34489ijn-7-4185.

    PubMed  CAS  Google Scholar 

  61. Tan B, Watson RR, Preedy VR. Tocotrienols: vitamin E beyond tocopherols. Boca Raton: CRC; 2012.

  62. Louguet S, Kumar AC, Guidolin N, Sigaud G, Duguet E, Lecommandoux S, et al. Control of the PEO chain conformation on nanoparticles by adsorption of PEO-block-poly(l-lysine) copolymers and its significance on colloidal stability and protein repellency. Langmuir. 2011;27(21):12891–901. doi:10.1021/la202990y.

    Article  PubMed  CAS  Google Scholar 

  63. Dos Santos N, Allen C, Doppen AM, Anantha M, Cox KA, Gallagher RC, et al. Influence of poly(ethylene glycol) grafting density and polymer length on liposomes: relating plasma circulation lifetimes to protein binding. Biochim Biophys Acta. 2007;1768(6):1367–77. doi:10.1016/j.bbamem.2006.12.013.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by a grant from the First Tech International Ltd (Wanchai, Hong Kong).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sami Nazzal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alayoubi, A., Alqahtani, S., Kaddoumi, A. et al. Effect of PEG Surface Conformation on Anticancer Activity and Blood Circulation of Nanoemulsions Loaded with Tocotrienol-Rich Fraction of Palm Oil. AAPS J 15, 1168–1179 (2013). https://doi.org/10.1208/s12248-013-9525-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-013-9525-z

Key words

Navigation