Skip to main content

Advertisement

Log in

Strategic Biomarkers for Drug Development in Treating Rare Diseases and Diseases in Neonates and Infants

  • Review Article
  • Theme: Challenges and Opportunities in Pediatric Drug Development
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

There are similar challenges in developing a product designed to treat patients with a rare disease and drugs to treat critically ill neonates and infants. Part of the challenge in developing such products as well as identifying the optimal dosing regimen for the treatment of young children arises from the complex interrelationship between developmental changes and changes in biomarkers responsive to drug therapy. These difficulties are further compounded by our lack of understanding of the key physiological factors that cause the differences in clinical responses between adults and neonates and infants. Regulatory efforts have succeeded in overcoming these challenges in many areas of pediatric and orphan drug development. Strategic applications of biomarkers and surrogate endpoints for the development and approval of a product used to treat an orphan disease will be highlighted with examples of approved products. Continued efforts are still needed to fill in our knowledge gap and to strategically link biomarkers and surrogate endpoints to clinical responses for rare diseases and diseases affecting neonates and infants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. EMA/794083/2009. Report on the survey of all paediatric uses of medicinal products in Europe. London, UK: Europena Mediciens Agency; 2010.

  2. Sachs AN, Avant D, Lee CS, Rodriguez W, Murphy MD. Pediatric information in drug product labeling. JAMA. 2012;307(18):1914–5. Comparative study.

    Article  PubMed  CAS  Google Scholar 

  3. FDASIA (the Food and Drug Administration Safety and Innovation Act) http://insidefdagov:9003/ORA/ucm316580htm. Accessed Oct 2012.

  4. Orphan Drug Act, Pub. L. 97-414. 96 Stat. 2049. (1984 as amended).

  5. Cote TR, Xu K, Pariser AR. Accelerating orphan drug development. Nat Rev Drug Discov. 2010;9(12):901–2. Comment.

    Article  PubMed  CAS  Google Scholar 

  6. FDA U. Code of Federal Regulations Title 2: adequate and well-controlled studies Pt. 314.126. US Government Printing Office, Washington, DC. 2009.

  7. Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther. 2001;69(3):89–95. Review.

    Article  Google Scholar 

  8. Najafian B, Svarstad E, Bostad L, Gubler MC, Tondel C, Whitley C, et al. Progressive podocyte injury and globotriaosylceramide (GL-3) accumulation in young patients with Fabry disease. Kidney Int. 2011;79(6):663–70. Multicenter study.

    Article  PubMed  CAS  Google Scholar 

  9. Cox TM. Biomarkers in lysosomal storage diseases. In: Mehta A, Beck M, Sunder-Plassmann G, editors. Fabry disease: perspectives from 5 years of FOS. Oxford: Oxford PharmaGenesis; 2006.

    Google Scholar 

  10. Guidance for industry. Qualification process for drug development tools. http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM230597.pdf. 2010. Accessed Jan 2013.

  11. Dunne J, Rodriguez WJ, Murphy MD, Beasley BN, Burckart GJ, Filie JD, et al. Extrapolation of adult data and other data in pediatric drug-development programs. Pediatrics. 2011;128(5):e1242–9. Comparative study.

    Article  PubMed  Google Scholar 

  12. Register F. 21 CFR Parts 201, 312, 314 and 601 (DOCID: fr02de98-24). http://wwwfdagov/ohrms/dockets/98fr/120298ctxt. 1998 December 2;63(231): 66631–72.

  13. Blake MJ, Castro L, Leeder JS, Kearns GL. Ontogeny of drug metabolizing enzymes in the neonate. Semin Fetal Neonatal Med. 2005;10(2):123–38.

    Article  PubMed  Google Scholar 

  14. Kearns GL, Abdel-Rahman SM, Alander SW, Blowey DL, Leeder JS, Kauffman RE. Developmental pharmacology–drug disposition, action, and therapy in infants and children. N Engl J Med. 2003;349(12):1157–67.

    Article  PubMed  CAS  Google Scholar 

  15. Rhodin MM, Anderson BJ, Peters AM, Coulthard MG, Wilkins B, Cole M, et al. Human renal function maturation: a quantitative description using weight and postmenstrual age. Pediatr Nephrol. 2009;24(1):67–76.

    Article  PubMed  Google Scholar 

  16. de Wildt SN, Kearns GL, Leeder JS, van den Anker JN. Cytochrome P450 3A: ontogeny and drug disposition. Clin Pharmacokinet. 1999;37(6):485–505.

    Article  PubMed  Google Scholar 

  17. Stevens JC, Hines RN, Gu C, Koukouritaki SB, Manro JR, Tandler PJ, et al. Developmental expression of the major human hepatic CYP3A enzymes. J Pharmacol Exp Ther. 2003;307(2):573–82.

    Article  PubMed  CAS  Google Scholar 

  18. Koukouritaki SB, Manro JR, Marsh SA, Stevens JC, Rettie AE, McCarver DG, et al. Developmental expression of human hepatic CYP2C9 and CYP2C19. J Pharmacol Exp Ther. 2004;308(3):965–74.

    Article  PubMed  CAS  Google Scholar 

  19. Hines RN. Developmental and tissue-specific expression of human flavin-containing monooxygenases 1 and 3. Expert Opin Drug Metab Toxicol. 2006;2(1):41–9.

    Article  PubMed  CAS  Google Scholar 

  20. de Wildt SN, Kearns GL, Leeder JS, van den Anker JN. Glucuronidation in humans. Pharmacogenetic and developmental aspects. Clin Pharmacokinet. 1999;36(6):439–52.

    Article  PubMed  Google Scholar 

  21. Strassburg CP, Strassburg A, Kneip S, Barut A, Tukey RH, Rodeck B, et al. Developmental aspects of human hepatic drug glucuronidation in young children and adults. Gut. 2002;50(2):259–65. Research support, non-U.S. Gov’t.

    Article  PubMed  CAS  Google Scholar 

  22. Alcorn J, McNamara PJ. Ontogeny of hepatic and renal systemic clearance pathways in infants: part II. Clin Pharmacokinet. 2002;41(13):1077–94.

    Article  PubMed  CAS  Google Scholar 

  23. Alcorn J, McNamara PJ. Ontogeny of hepatic and renal systemic clearance pathways in infants: part I. Clin Pharmacokinet. 2002;41(12):959–98.

    Article  PubMed  CAS  Google Scholar 

  24. Leeder JS, Kearns GL, Spielberg SP, van den Anker J. Understanding the relative roles of pharmacogenetics and ontogeny in pediatric drug development and regulatory science. J Clin Pharmacol. 2010;50(12):1377–87. Research support, N.I.H., extramural.

    Article  PubMed  Google Scholar 

  25. Becker ML, Leeder JS. Identifying genomic and developmental causes of adverse drug reactions in children. Pharmacogenomics. 2010;11(11):1591–602. Research support, N.I.H., extramural research support, non-U.S. gov't review.

    Article  PubMed  CAS  Google Scholar 

  26. Tang L, Rines R, Schuetz E, Meibohm B. Age-associated expression of P-glycoprotein and MRP2 in human pediatric liver. Clin Pharmacol Ther. 2007;81:S101.

    Google Scholar 

  27. Nong A, McCarver DG, Hines RN, Krishnan K. Modeling interchild differences in pharmacokinetics on the basis of subject-specific data on physiology and hepatic CYP2E1 levels: a case study with toluene. Toxicol Appl Pharmacol. 2006;214(1):78–87.

    Article  PubMed  CAS  Google Scholar 

  28. Edginton AN, Schmitt W, Voith B, Willmann S. A mechanistic approach for the scaling of clearance in children. Clin Pharmacokinet. 2006;45(7):683–704.

    Article  PubMed  CAS  Google Scholar 

  29. Marshall JD, Kearns GL. Developmental pharmacodynamics of cyclosporine. Clin Pharmacol Ther. 1999;66(1):66–75.

    Article  PubMed  CAS  Google Scholar 

  30. Laer S, Elshoff JP, Meibohm B, Weil J, Mir TS, Zhang W, et al. Development of a safe and effective pediatric dosing regimen for sotalol based on population pharmacokinetics and pharmacodynamics in children with supraventricular tachycardia. J Am Coll Cardiol. 2005;46(7):1322–30.

    Article  PubMed  Google Scholar 

  31. Laer S, Barrett JS, Meibohm B. The in silico child: using simulation to guide pediatric drug development and manage pediatric pharmacotherapy. J Clin Pharmacol. 2009;49(8):889–904.

    Article  PubMed  CAS  Google Scholar 

  32. Meibohm B, Laer S, Panetta JC, Barrett JS. Population pharmacokinetic studies in pediatrics: issues in design and analysis. AAPS J. 2005;7(2):E475–87.

    Article  PubMed  Google Scholar 

  33. Bonate PL. The effect of collinearity on parameter estimates in nonlinear mixed effect models. Pharm Res. 1999;16(5):709–17.

    Article  PubMed  CAS  Google Scholar 

  34. Anderson BJ, Holford NH. Mechanistic basis of using body size and maturation to predict clearance in humans. Drug Metab Pharmacokinet. 2009;24(1):25–36.

    Article  PubMed  CAS  Google Scholar 

  35. Anderson BJ, McKee AD, Holford NH. Size, myths and the clinical pharmacokinetics of analgesia in paediatric patients. Clin Pharmacokinet. 1997;33(5):313–27.

    Article  PubMed  CAS  Google Scholar 

  36. Albers S, Meibohm B, Mir TS, Laer S. Population pharmacokinetics and dose simulation of carvedilol in paediatric patients with congestive heart failure. Br J Clin Pharmacol. 2008;65(4):511–22.

    Article  PubMed  CAS  Google Scholar 

  37. Barrett J. Modeling and simulation in pediatric research and development. In: Kimko H, Peck C, editors. Clinical trial simulations: applications & trends. New York: Springer Science + Business Media; 2010.

    Google Scholar 

  38. Cohen-Wolkowiez M, Ouellet D, Smith PB, James LP, Ross A, Sullivan JE, et al. Population pharmacokinetics of metronidazole evaluated using scavenged samples from preterm infants. Antimicrob Agents Chemother. 2012;56(4):1828–37. Multicenter Study Research Support, N.I.H., Extramural.

    Article  PubMed  CAS  Google Scholar 

  39. Ginsberg G, Hattis D, Miller R, Sonawane B. Pediatric pharmacokinetic data: implications for environmental risk assessment for children. Pediatrics. 2004;113(4 Suppl):973–83. Research support, non-U.S. gov’t research support, U.S. gov’t, non-P.H.S.

    PubMed  Google Scholar 

  40. Yang F, Tong X, McCarver DG, Hines RN, Beard DA. Population-based analysis of methadone distribution and metabolism using an age-dependent physiologically based pharmacokinetic model. J Pharmacokinet Pharmacodyn. 2006;33(4):485–518. Research support, N.I.H., extramural.

    Article  PubMed  CAS  Google Scholar 

  41. Leong R, Vieira ML, Zhao P, Mulugeta Y, Lee CS, Huang SM, et al. Regulatory experience with physiologically based pharmacokinetic modeling for pediatric drug trials. Clin Pharmacol Ther. 2012;91(5):926–31.

    Article  PubMed  CAS  Google Scholar 

  42. Chen IL, Gao WY, Johnson AP, Niak A, Troiani J, Korvick J, et al. Proton pump inhibitor use in infants: FDA reviewer experience. J Pediatr Gastroenterol Nutr. 2012;54(1):8–14.

    Article  PubMed  CAS  Google Scholar 

  43. Zuppa AF, Nicolson SC, Adamson PC, Wernovsky G, Mondick JT, Burnham N, et al. Population pharmacokinetics of milrinone in neonates with hypoplastic left heart syndrome undergoing stage I reconstruction. Anesth Analg. 2006;102(4):1062–9. comparative study randomized controlled trial research support, N.I.H., extramural research support, non-U.S. gov’t.

    Article  PubMed  CAS  Google Scholar 

  44. Paradisis M, Jiang X, McLachlan AJ, Evans N, Kluckow M, Osborn D. Population pharmacokinetics and dosing regimen design of milrinone in preterm infants. Arch Dis Child Fetal Neonatal Ed. 2007;92(3):F204–9. multicenter study research support, non-U.S. gov’t.

    Article  PubMed  Google Scholar 

  45. Argatroban. http://www.accessdata.fda.gov/drugsatfda_docs/abel/2008/020883s014lbl.pdf. Drugs@FDA. Accessed 2012.

  46. Davis JM, Connor EM, Wood AJ. The need for rigorous evidence on medication use in preterm infants: is it time for a neonatal rule? JAMA. 2012;308(14):1435–6. research support, N.I.H., extramural.

    Article  PubMed  CAS  Google Scholar 

  47. Drugs@FDA. http://wwwaccessdatafdagov/scripts/cder/drugsatfda/indexcfm. Accessed Jan 2012.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jane P. F. Bai or Lynne Yao.

Additional information

Guest Editors: Bernd Meibohm, Jeffrey S. Barrett, and Gregory Knipp

Disclaimer

The views expressed in this article are not intended to represent the views of the US Food and Drug Administration.

This manuscript is partially based on the AAPS symposium at the 2009 AAPS annual meeting in Los Angeles, California, USA.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bai, J.P.F., Barrett, J.S., Burckart, G.J. et al. Strategic Biomarkers for Drug Development in Treating Rare Diseases and Diseases in Neonates and Infants. AAPS J 15, 447–454 (2013). https://doi.org/10.1208/s12248-013-9452-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-013-9452-z

Key words

Navigation