Skip to main content
Log in

Supersaturated Self-Nanoemulsifying Drug Delivery Systems (Super-SNEDDS) Enhance the Bioavailability of the Poorly Water-Soluble Drug Simvastatin in Dogs

  • Research Article
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

This study investigates the potential of supersaturated self-nanoemulsifying drug delivery systems (super-SNEDDS) to improve the bioavailability of poorly water-soluble drugs compared to conventional SNEDDS. Conventional SNEDDS contained simvastatin (SIM) at 75% of the equilibrium solubility (S eq). Super-SNEDDS containing SIM at 150 and 200% of S eq were produced by subjecting the SNEDDS preconcentrates to a heating and cooling cycle. The super-SNEDDS were physically stable over 10 months. During in vitro lipolysis of SNEDDS and super-SNEDDS the SIM concentration in the aqueous phase increased for the first 30 min almost proportional to the drug loads and amounts of preconcentrate employed. The 200% drug-loaded super-SNEDDS generated an amorphous SIM precipitate at the end of in vitro lipolysis. In vivo, the relative bioavailability of SIM from super-SEDDDS increased significantly to 180 ± 53.3% (p = 0.014) compared to the dosing of two capsules of (dose equivalent) 75% drug-loaded SNEDDS. A significant increase in the terminal half-life of elimination was observed for super-SNEDDS (2.3 ± 0.6 h) compared to conventional SNEDDS (1.4 ± 0.3 h) as well as a decreased area under the curve ratio of the SIM metabolite simvastatin acid to the parent compound (0.57 ± 0.20 and 0.90 ± 0.3), possibly due to a combination of saturation effects on presystemic metabolising enzymes and prolonged absorption along the small intestine. In summary, this study demonstrated that super-SNEDDS are a viable formulation option to enhance the bioavailability of poorly water-soluble drugs such as simvastatin while reducing the pill burden by an increased drug load of SNEDDS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chakraborty S, Shukla D, Mishra B, Singh S. Lipid - an emerging platform for oral delivery of drugs with poor bioavailability. Eur J Pharm Biopharm. 2009;73(1):1–70.

    Article  PubMed  CAS  Google Scholar 

  2. Fahr A, Liu X. Drug delivery strategies for poorly water-soluble drugs. Expert Opin Drug Deliv. 2007;4(4):403–16.

    Article  PubMed  CAS  Google Scholar 

  3. Hauss DH. Oral lipid-based formulations. Adv Drug Deliv Rev. 2007;59(7):667–76.

    Article  PubMed  CAS  Google Scholar 

  4. Pouton CW, Porter CJH. Formulation of lipid-based delivery systems for oral administration: materials, methods and strategies. Adv Drug Deliv Rev. 2008;60(6):625–37.

    Article  PubMed  CAS  Google Scholar 

  5. Humberstone AJ, Charman WN. Lipid-based vehicles for the oral delivery of poorly water soluble drugs. Adv Drug Deliv Rev. 1997;25(1):103–28.

    Article  CAS  Google Scholar 

  6. Anton N, Vandamme T. Nano-emulsions and micro-emulsions: clarifications of the critical differences. Pharm Res. 2011;28(5):978–85.

    Article  PubMed  CAS  Google Scholar 

  7. Kovarik JM, Mueller EA, Van Bree JB, Tetzloff W, Kutz K. Reduced inter- and intraindividual variability in cyclosporine pharmacokinetics from a microemulsion formulation. J Pharm Sci. 1994;83(3):444–6.

    Article  PubMed  CAS  Google Scholar 

  8. Mueller EA, Kovarik JM, van Bree JB, Grevel J, Lücker PW, Kutz K. Influence of a fat-rich meal on the pharmacokinetics of a new oral formulation of cyclosporine in a crossover comparison with the market formulation. Pharm Res. 1994;11(1):151–5.

    Article  PubMed  CAS  Google Scholar 

  9. Mueller EA, Kovarik JM, van Bree JB, Tetzloff W, Grevel J, Kutz K. Improved dose linearity of cyclosporine pharmacokinetics from a microemulsion formulation. Pharm Res. 1994;11(2):301–4.

    Article  PubMed  CAS  Google Scholar 

  10. Fatouros DG, Karpf DM, Nielsen FS, Müllertz A. Clinical studies with oral lipid based formulations of poorly soluble compounds. Ther Clin Risk Manag. 2007;3(4):591–604.

    PubMed  CAS  Google Scholar 

  11. Porter CJH, Trevaskis NL, Charman WN. Lipids and lipid-based formulations: optimizing the oral delivery of lipophilic drugs. Nat Rev Drug Discov. 2007;6(March):231–48.

    Article  PubMed  CAS  Google Scholar 

  12. Strickley RG. Solubilizing excipients in oral and injectable formulations. Pharm Res. 2004;21(2):201–30.

    Article  PubMed  CAS  Google Scholar 

  13. Rane SS, Anderson BD. What determines drug solubility in lipid vehicles: is it predictable? Adv Drug Deliv Rev. 2008;60(6):638–56.

    Article  PubMed  CAS  Google Scholar 

  14. Thi TD, Van Speybroeck M, Barillaro V, Martens J, Annaert P, Augustijns P, et al. Formulate-ability of ten compounds with different physicochemical profiles in SMEDDS. Eur J Pharm Sci. 2009;38(5):479–88.

    Article  PubMed  CAS  Google Scholar 

  15. Christensen J, Schultz K, Mollgard B, Kristensen HG, Müllertz A. Solubilisation of poorly water-soluble drugs during in vitro lipolysis of medium- and long-chain triacylglycerols. Eur J Pharm Sci. 2004;23(3):287–96.

    Article  PubMed  CAS  Google Scholar 

  16. Kaukonen AM, Boyd BJ, Porter CJH, Charman WN. Drug solubilization behavior during in vitro digestion of simple triglyceride lipid solution formulations. Pharm Res. 2004;21(2):245–53.

    Article  PubMed  CAS  Google Scholar 

  17. Sassene PJ, Knopp MM, Hesselkilde JZ, Koradia V, Larsen A, Rades T, et al. Precipitation of a poorly soluble model drug during in vitro lipolysis: characterization and dissolution of the precipitate. J Pharm Sci. 2010;99(12):4982–91.

    Article  PubMed  CAS  Google Scholar 

  18. Thomas N, Holm R, Müllertz A, Rades T. In vitro and in vivo performance of novel supersaturated self-nanoemulsifying drug delivery systems (super-SNEDDS). J Control Release. 2012;160(1):25–32.

    Article  PubMed  CAS  Google Scholar 

  19. Tubic-Grozdanis M, Hilfinger J, Amidon G, Kim J, Kijek P, Staubach P, et al. Pharmacokinetics of the CYP 3A substrate simvastatin following administration of delayed versus immediate release oral dosage forms. Pharm Res. 2008;25(7):1591–600.

    Article  PubMed  CAS  Google Scholar 

  20. Pedersen TR, Tobert JA. Simvastatin: a review. Expert Opin Pharmacother. 2004;5(12):2583–96.

    Article  PubMed  CAS  Google Scholar 

  21. Hamelin BA, Turgeon J. Hydrophilicity/lipophilicity: relevance for the pharmacology and clinical effects of HMG-CoA reductase inhibitors. Trends Pharmacol Sci. 1998;19(1):26–37.

    Article  PubMed  CAS  Google Scholar 

  22. Serajuddin ATM, Ranadive SA, Mahoney EM. Relative lipophilicities, solubilities, and structure-pharmacological considerations of 3-hydroxy-3-methylglutaryl-coenzyme a (HMG-COA) reductase inhibitors pravastatin, lovastatin, mevastatin, and simvastatin. J Pharm Sci. 1991;80(9):830–4.

    Article  PubMed  CAS  Google Scholar 

  23. Kang BK, Lee JS, Chon SK, Jeong SY, Yuk SH, Khang G, et al. Development of self-microemulsifying drug delivery systems (SMEDDS) for oral bioavailability enhancement of simvastatin in beagle dogs. Int J Pharm. 2004;274(1–2):65–73.

    Article  PubMed  CAS  Google Scholar 

  24. Zhang Z, Bu H, Gao Z, Huang Y, Gao F, Li Y. The characteristics and mechanism of simvastatin loaded lipid nanoparticles to increase oral bioavailability in rats. Int J Pharm. 2010;394(1–2):147–53.

    Article  PubMed  CAS  Google Scholar 

  25. Thomas N, Müllertz A, Graf A, Rades T. Influence of lipid composition and drug load on the in vitro performance of self-nanoemulsifying drug delivery systems. J Pharm Sci. 2012;101(5):1721–31.

    Article  PubMed  CAS  Google Scholar 

  26. Zangenberg NH, Müllertz A, Kristensen HG, Hovgaard L. A dynamic in vitro lipolysis model: I. Controlling the rate of lipolysis by continuous addition of calcium. Eur J Pharm Sci. 2001;14(2):115–22.

    Article  PubMed  CAS  Google Scholar 

  27. Zangenberg NH, Müllertz A, Kristensen HG, Hovgaard L. A dynamic in vitro lipolysis model. II: Evaluation of the model. Eur J Pharm Sci. 2001;14(3):237–44.

    Article  PubMed  CAS  Google Scholar 

  28. Shitara Y, Sugiyama Y. Pharmacokinetic and pharmacodynamic alterations of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors: drug–drug interactions and interindividual differences in transporter and metabolic enzyme functions. Pharmacol Ther. 2006;112(1):71–105.

    Article  PubMed  CAS  Google Scholar 

  29. Sawada T, Sako K, Yoshihara K, Nakamura K, Yokohama S, Hayashi M. Timed-release formulation to avoid drug–drug interaction between diltiazem and midazolam. J Pharm Sci. 2003;92(4):790–7.

    Article  PubMed  CAS  Google Scholar 

  30. McKinnon RA, McManus ME. Localization of cytochromes P450 in human tissues: implications for chemical toxicity. Pathol (Phila). 1996;28(2):148–55.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the personnel in the animal facilities at H. Lundbeck A/S for their skilful handling of the animals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anette Müllertz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thomas, N., Holm, R., Garmer, M. et al. Supersaturated Self-Nanoemulsifying Drug Delivery Systems (Super-SNEDDS) Enhance the Bioavailability of the Poorly Water-Soluble Drug Simvastatin in Dogs. AAPS J 15, 219–227 (2013). https://doi.org/10.1208/s12248-012-9433-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-012-9433-7

Key words

Navigation