Skip to main content

Advertisement

Log in

Renal Organic Anion Transporters (SLC22 Family): Expression, Regulation, Roles in Toxicity, and Impact on Injury and Disease

  • Review Article
  • Theme: Kidney Transporters: Importance in Clearance, Disease and Drug-Drug Interactions
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Organic solute flux across the basolateral and apical membranes of renal proximal tubule cells is a key process for maintaining systemic homeostasis. It represents an important route for the elimination of metabolic waste products and xenobiotics, as well as for the reclamation of essential compounds. Members of the organic anion transporter (OAT, SLC22) family expressed in proximal tubules comprise one pathway mediating the active renal secretion and reabsorption of organic anions. Many drugs, pesticides, hormones, heavy metal conjugates, components of phytomedicines, and toxins are OAT substrates. Thus, through transporter activity, the kidney can be a target organ for their beneficial or detrimental effects. Detailed knowledge of the OATs expressed in the kidney, their membrane targeting, substrate specificity, and mechanisms of action is essential to understanding organ function and dysfunction. The intracellular processes controlling OAT expression and function, and that can thus modulate kidney transport capacity, are also critical to this understanding. Such knowledge is also providing insight to new areas such as renal transplant research. This review will provide an overview of the OATs for which transport activity has been demonstrated and expression/function in the kidney observed. Examples establishing a role for renal OATs in drug clearance, food/drug–drug interactions, and renal injury and pathology are presented. An update of the current information regarding the regulation of OAT expression is also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

REFERENCES

  1. He L, Vasiliou K, Nebert DW. Analysis and update of the human solute carrier (SLC) gene superfamily. Hum Genomics. 2009;3:195–206.

    Article  PubMed  CAS  Google Scholar 

  2. Sweet DH. Organic anion transporter (Slc22a) family members as mediators of toxicity. Toxicol Appl Pharmacol. 2005;204:198–215.

    Article  PubMed  CAS  Google Scholar 

  3. VanWert AL, Gionfriddo MR, Sweet DH. Organic anion transporters: discovery, pharmacology, regulation and roles in pathophysiology. Biopharm Drug Dispos. 2010;31:1–71.

    PubMed  CAS  Google Scholar 

  4. Sweet DH. Renal organic cation and anion transport: from physiology to genes. In: McQueen CA, editor. Comprehensive toxicology, 2nd ed., vol. 7. Oxford: Elsevier; 2010. p. 23–53.

    Google Scholar 

  5. Tsuchida H, Anzai N, Shin HJ, Wempe MF, Jutabha P, Enomoto A, et al. Identification of a novel organic anion transporter mediating carnitine transport in mouse liver and kidney. Cell Physiol Biochem. 2010;25:511–22.

    Article  PubMed  CAS  Google Scholar 

  6. Ogasawara K, Terada T, Asaka J, Katsura T, Inui K. Human organic anion transporter 3 gene is regulated constitutively and inducibly via a cAMP-response element. J Pharmacol Exp Ther. 2006;319:317–22.

    Article  PubMed  CAS  Google Scholar 

  7. Kikuchi R, Kusuhara H, Hattori N, Kim I, Shiota K, Gonzalez FJ, et al. Regulation of tissue-specific expression of the human and mouse urate transporter 1 gene by hepatocyte nuclear factor 1 alpha/beta and DNA methylation. Mol Pharmacol. 2007;72:1619–25.

    Article  PubMed  CAS  Google Scholar 

  8. Saji T, Kikuchi R, Kusuhara H, Kim I, Gonzalez FJ, Sugiyama Y. Transcriptional regulation of human and mouse organic anion transporter 1 by hepatocyte nuclear factor 1 alpha/beta. J Pharmacol Exp Ther. 2008;324:784–90.

    Article  PubMed  CAS  Google Scholar 

  9. Kikuchi R, Kusuhara H, Hattori N, Shiota K, Kim I, Gonzalez FJ, et al. Regulation of the expression of human organic anion transporter 3 by hepatocyte nuclear factor 1alpha/beta and DNA methylation. Mol Pharmacol. 2006;70:887–96.

    Article  PubMed  CAS  Google Scholar 

  10. Jin L, Kikuchi R, Saji T, Kusuhara H, Sugiyama Y. Regulation of tissue-specific expression of renal organic anion transporters by hepatocyte nuclear factor 1 alpha/beta and DNA methylation. J Pharmacol Exp Ther. 2012;340:648–55.

    Article  PubMed  CAS  Google Scholar 

  11. Klein K, Jungst C, Mwinyi J, Stieger B, Krempler F, Patsch W, et al. The human organic anion transporter genes OAT5 and OAT7 are transactivated by hepatocyte nuclear factor-1alpha (HNF-1alpha). Mol Pharmacol. 2010;78:1079–87.

    Article  PubMed  CAS  Google Scholar 

  12. Ogasawara K, Terada T, Asaka J, Katsura T, Inui K. Hepatocyte nuclear factor-4{alpha} regulates the human organic anion transporter 1 gene in the kidney. Am J Physiol Renal Physiol. 2007;292:F1819–26.

    Article  PubMed  CAS  Google Scholar 

  13. Popowski K, Eloranta JJ, Saborowski M, Fried M, Meier PJ, Kullak-Ublick GA. The human organic anion transporter 2 gene is transactivated by hepatocyte nuclear factor-4 alpha and suppressed by bile acids. Mol Pharmacol. 2005;67:1629–38.

    Article  PubMed  CAS  Google Scholar 

  14. Wegner W, Burckhardt BC, Burckhardt G, Henjakovic M. Male-dominant activation of rat renal organic anion transporter 1 (Oat1) and 3 (Oat3) expression by transcription factor BCL6. PLoS One. 2012;7:e35556.

    Article  PubMed  CAS  Google Scholar 

  15. Duan P, Li S, You G. Angiotensin II inhibits activity of human organic anion transporter 3 through activation of protein kinase Calpha: accelerating endocytosis of the transporter. Eur J Pharmacol. 2009;627:49–55.

    Article  PubMed  CAS  Google Scholar 

  16. Li S, Duan P, You G. Regulation of human organic anion transporter 3 by peptide hormone bradykinin. J Pharmacol Exp Ther. 2010;333:970–5.

    Article  PubMed  CAS  Google Scholar 

  17. Barros SA, Srimaroeng C, Perry JL, Walden R, Dembla-Rajpal N, Sweet DH, et al. Activation of protein kinase Czeta increases OAT1 (SLC22A6)- and OAT3 (SLC22A8)-mediated transport. J Biol Chem. 2009;284:2672–9.

    Article  PubMed  CAS  Google Scholar 

  18. Eraly SA, Hamilton BA, Nigam SK. Organic anion and cation transporters occur in pairs of similar and similarly expressed genes. Biochem Biophys Res Commun. 2003;300:333–42.

    Article  PubMed  CAS  Google Scholar 

  19. Li T, Walsh JR, Ghishan FK, Bai L. Molecular cloning and characterization of a human urate transporter (hURAT1) gene promoter. Biochim Biophys Acta. 2004;1681:53–8.

    Article  PubMed  CAS  Google Scholar 

  20. Lazzaro D, De Simone V, De Magistris L, Lehtonen E, Cortese R. LFB1 and LFB3 homeoproteins are sequentially expressed during kidney development. Development. 1992;114:469–79.

    PubMed  CAS  Google Scholar 

  21. Maher JM, Slitt AL, Callaghan TN, Cheng X, Cheung C, Gonzalez FJ, et al. Alterations in transporter expression in liver, kidney, and duodenum after targeted disruption of the transcription factor HNF1alpha. Biochem Pharmacol. 2006;72:512–22.

    Article  PubMed  CAS  Google Scholar 

  22. Ji L, Masuda S, Saito H, Inui K. Down-regulation of rat organic cation transporter rOCT2 by 5/6 nephrectomy. Kidney Int. 2002;62:514–24.

    Article  PubMed  CAS  Google Scholar 

  23. Monica Torres A, Mac Laughlin M, Muller A, Brandoni A, Anzai N, Endou H. Altered renal elimination of organic anions in rats with chronic renal failure. Biochim Biophys Acta. 2005;1740:29–37.

    Article  PubMed  CAS  Google Scholar 

  24. Naud J, Michaud J, Beauchemin S, Hebert MJ, Roger M, Lefrancois S, et al. Effects of chronic renal failure on kidney drug transporters and cytochrome P450 in rats. Drug Metab Dispos. 2011;39:1363–9.

    Article  PubMed  CAS  Google Scholar 

  25. Kwon O, Hong SM, Blouch K. Alteration in renal organic anion transporter 1 after ischemia/reperfusion in cadaveric renal allografts. J Histochem Cytochem. 2007;55:575–84.

    Article  PubMed  CAS  Google Scholar 

  26. Kwon O, Wang WW, Miller S. Renal organic anion transporter 1 is maldistributed and diminishes in proximal tubule cells but increases in vasculature after ischemia and reperfusion. Am J Physiol Renal Physiol. 2008;295:F1807–16.

    Article  PubMed  CAS  Google Scholar 

  27. Schneider R, Sauvant C, Betz B, Otremba M, Fischer D, Holzinger H, et al. Downregulation of organic anion transporters OAT1 and OAT3 correlates with impaired secretion of para-aminohippurate after ischemic acute renal failure in rats. Am J Physiol Renal Physiol. 2007;292:F1599–605.

    Article  PubMed  CAS  Google Scholar 

  28. Matsuzaki T, Watanabe H, Yoshitome K, Morisaki T, Hamada A, Nonoguchi H, et al. Downregulation of organic anion transporters in rat kidney under ischemia/reperfusion-induced acute renal failure. Kidney Int. 2007;71:539–47.

    Article  PubMed  CAS  Google Scholar 

  29. Di Giusto G, Anzai N, Endou H, Torres AM. Oat5 and NaDC1 protein abundance in kidney and urine after renal ischemic reperfusion injury. J Histochem Cytochem. 2009;57:17–27.

    Article  PubMed  CAS  Google Scholar 

  30. Kunin M, Holtzman EJ, Melnikov S, Dinour D. Urinary organic anion transporter protein profiles in AKI. Nephrol Dial Transplant. 2012;27:1387–95.

    Article  PubMed  CAS  Google Scholar 

  31. Astorga B, Wunz TM, Morales M, Wright SH, Pelis RM. Differences in the substrate binding regions of renal organic anion transporters 1 (OAT1) and 3 (OAT3). Am J Physiol Renal Physiol. 2011;301:F378–86.

    Article  PubMed  CAS  Google Scholar 

  32. Rodiger M, Zhang X, Ugele B, Gersdorff N, Wright SH, Burckhardt G, et al. Organic anion transporter 3 (OAT3) and renal transport of the metal chelator 2,3-dimercapto-1-propanesulfonic acid (DMPS). Can J Physiol Pharmacol. 2010;88:141–6.

    Article  PubMed  CAS  Google Scholar 

  33. Makino T, Okajima K, Uebayashi R, Ohtake N, Inoue K, Mizukami H. 3-Monoglucuronyl-glycyrrhretinic acid is a substrate of organic anion transporters expressed in tubular epithelial cells and plays important roles in licorice-induced pseudoaldosteronism by inhibiting 11beta-hydroxysteroid dehydrogenase 2. J Pharmacol Exp Ther. 2012;342:297–304.

    Article  PubMed  CAS  Google Scholar 

  34. Uwai Y, Iwamoto K. Transport of aminopterin by human organic anion transporters hOAT1 and hOAT3: comparison with methotrexate. Drug Metab Pharmacokinet. 2010;25:163–9.

    Article  PubMed  CAS  Google Scholar 

  35. Chiba S, Ikawa T, Takeshita H, Ichiba K, Sagi M, Mukai T, et al. Interactions of human organic anion transporter 1 (hOAT1) with substances associated with forensic toxicology. Leg Med (Tokyo). 2011;13:180–5.

    Article  CAS  Google Scholar 

  36. Ahn SY, Jamshidi N, Mo ML, Wu W, Eraly SA, Dnyanmote A, et al. Linkage of organic anion transporter-1 to metabolic pathways through integrated “omics”-driven network and functional analysis. J Biol Chem. 2011;286:31522–31.

    Article  PubMed  CAS  Google Scholar 

  37. Bakhiya N, Arlt VM, Bahn A, Burckhardt G, Phillips DH, Glatt H. Molecular evidence for an involvement of organic anion transporters (OATs) in aristolochic acid nephropathy. Toxicology. 2009;264:74–9.

    Article  PubMed  CAS  Google Scholar 

  38. Babu E, Takeda M, Nishida R, Noshiro-Kofuji R, Yoshida M, Ueda S, et al. Interactions of human organic anion transporters with aristolochic acids. J Pharmacol Sci. 2010;113:192–6.

    Article  PubMed  CAS  Google Scholar 

  39. Xue X, Gong LK, Maeda K, Luan Y, Qi XM, Sugiyama Y, et al. Critical role of organic anion transporters 1 and 3 in kidney accumulation and toxicity of aristolochic acid I. Mol Pharm. 2011;8:2183–92.

    Article  PubMed  CAS  Google Scholar 

  40. Dickman KG, Sweet DH, Bonala R, Ray T, Wu A. Physiological and molecular characterization of aristolochic acid transport by the kidney. J Pharmacol Exp Ther. 2011;338:588–97.

    Article  PubMed  CAS  Google Scholar 

  41. Zeng Y, Zhang R, Wu J, Liu M, Peng W, Yu X, et al. Organic anion transporter 1 (OAT1) involved in renal cell transport of aristolochic acid I. Hum Exp Toxicol 2012; 31: 759–70.

    Google Scholar 

  42. Zhu Y, Meng Q, Wang C, Liu Q, Sun H, Kaku T, et al. Organic anion transporters involved in the excretion of bestatin in the kidney. Peptides. 2012;33:265–71.

    Article  PubMed  CAS  Google Scholar 

  43. Wong CC, Barron D, Orfila C, Dionisi F, Krajcsi P, Williamson G. Interaction of hydroxycinnamic acids and their conjugates with organic anion transporters and ATP-binding cassette transporters. Mol Nutr Food Res. 2011;55:979–88.

    Article  PubMed  CAS  Google Scholar 

  44. Uwai Y, Ozeki Y, Isaka T, Honjo H, Iwamoto K. Inhibitory effect of caffeic acid on human organic anion transporters hOAT1 and hOAT3: a novel candidate for food–drug interaction. Drug Metab Pharmacokinet. 2011;26:486–93.

    Article  PubMed  CAS  Google Scholar 

  45. Zhang J, Wang C, Liu Q, Meng Q, Cang J, Sun H, et al. Pharmacokinetic interaction between JBP485 and cephalexin in rats. Drug Metab Dispos. 2010;38:930–8.

    Article  PubMed  CAS  Google Scholar 

  46. Wong CC, Botting NP, Orfila C, Al-Maharik N, Williamson G. Flavonoid conjugates interact with organic anion transporters (OATs) and attenuate cytotoxicity of adefovir mediated by organic anion transporter 1 (OAT1/SLC22A6). Biochem Pharmacol. 2011;81:942–9.

    Article  PubMed  CAS  Google Scholar 

  47. Wang L, Sweet DH. Potential for food–drug interactions by dietary phenolic acids on human organic anion transporters 1 (SLC22A6), 3 (SLC22A8), and 4 (SLC22A11). Biochem Pharmacol. 2012;84:1088–95.

    Google Scholar 

  48. Larsen M, Holm R, Jensen KG, Sveigaard C, Brodin B, Nielsen CU. 5-Hydroxy-L-tryptophan alters gaboxadol pharmacokinetics in rats: involvement of PAT1 and rOat1 in gaboxadol absorption and elimination. Eur J Pharm Sci. 2010;39:68–75.

    Article  PubMed  CAS  Google Scholar 

  49. Wikoff WR, Nagle MA, Kouznetsova VL, Tsigelny IF, Nigam SK. Untargeted metabolomics identifies enterobiome metabolites and putative uremic toxins as substrates of organic anion transporter 1 (Oat1). J Proteome Res. 2011;10:2842–51.

    Article  PubMed  CAS  Google Scholar 

  50. Wang L, Sweet DH. Active hydrophilic components of the medicinal herb salvia miltiorrhiza (Danshen) potently inhibit organic anion transporters 1 (Slc22a6) and 3 (Slc22a8). Evid Based Complement Alternat Med. 2012;2012:(Article ID: 872458).

  51. Uwai Y, Honjo H, Iwamoto K. Inhibitory effect of selective cyclooxygenase-2 inhibitor lumiracoxib on human organic anion transporters hOAT1 and hOAT3. Drug Metab Pharmacokinet. 2010;25:450–5.

    Article  PubMed  CAS  Google Scholar 

  52. Choi MK, Jin QR, Choi YL, Ahn SH, Bae MA, Song IS. Inhibitory effects of ketoconazole and rifampin on OAT1 and OATP1B1 transport activities: considerations on drug–drug interactions. Biopharm Drug Dispos. 2011;32:175–84.

    Article  PubMed  CAS  Google Scholar 

  53. Elsby R, Fox L, Stresser D, Layton M, Butters C, Sharma P, et al. In vitro risk assessment of AZD9056 perpetrating a transporter-mediated drug-drug interaction with methotrexate. Eur J Pharm Sci. 2011;43:41–9.

    Article  PubMed  CAS  Google Scholar 

  54. Fork C, Bauer T, Golz S, Geerts A, Weiland J, Del Turco D, et al. OAT2 catalyses efflux of glutamate and uptake of orotic acid. Biochem J. 2011;436:305–12.

    Article  PubMed  CAS  Google Scholar 

  55. Sato M, Mamada H, Anzai N, Shirasaka Y, Nakanishi T, Tamai I. Renal secretion of uric acid by organic anion transporter 2 (OAT2/SLC22A7) in human. Biol Pharm Bull. 2010;33:498–503.

    Article  PubMed  CAS  Google Scholar 

  56. Lai Y, Sampson KE, Balogh LM, Brayman TG, Cox SR, Adams WJ, et al. Preclinical and clinical evidence for the collaborative transport and renal secretion of an oxazolidinone antibiotic by organic anion transporter 3 (OAT3/SLC22A8) and multidrug and toxin extrusion protein 1 (MATE1/SLC47A1). J Pharmacol Exp Ther. 2010;334:936–44.

    Article  PubMed  CAS  Google Scholar 

  57. Schnabolk GW, Gupta B, Mulgaonkar A, Kulkarni M, Sweet DH. Organic anion transporter 6 (Slc22a20) specificity and Sertoli cell-specific expression provide new insight on potential endogenous roles. J Pharmacol Exp Ther. 2010;334:927–35.

    Article  PubMed  CAS  Google Scholar 

  58. Maeda A, Tsuruoka S, Ushijima K, Kanai Y, Endou H, Saito K, et al. Drug interaction between celecoxib and methotrexate in organic anion transporter 3-transfected renal cells and in rats in vivo. Eur J Pharmacol. 2010;640:168–71.

    Article  PubMed  CAS  Google Scholar 

  59. Miyajima M, Kusuhara H, Fujishima M, Adachi Y, Sugiyama Y. Organic anion transporter 3 mediates the efflux transport of an amphipathic organic anion, dehydroepiandrosterone sulfate, across the blood–brain barrier in mice. Drug Metab Dispos. 2011;39:814–9.

    Article  PubMed  CAS  Google Scholar 

  60. Yang CH, Glover KP, Han X. Characterization of cellular uptake of perfluorooctanoate via organic anion-transporting polypeptide 1A2, organic anion transporter 4, and urate transporter 1 for their potential roles in mediating human renal reabsorption of perfluorocarboxylates. Toxicol Sci. 2010;117:294–302.

    Article  PubMed  CAS  Google Scholar 

  61. Shin HJ, Takeda M, Enomoto A, Fujimura M, Miyazaki H, Anzai N, et al. Interactions of urate transporter URAT1 in human kidney with uricosuric drugs. Nephrology (Carlton). 2011;16:156–62.

    Article  CAS  Google Scholar 

  62. Uetake D, Ohno I, Ichida K, Yamaguchi Y, Saikawa H, Endou H, et al. Effect of fenofibrate on uric acid metabolism and urate transporter 1. Intern Med. 2010;49:89–94.

    Article  PubMed  CAS  Google Scholar 

  63. Nakamura M, Anzai N, Jutabha P, Sato H, Sakurai H, Ichida K. Concentration-dependent inhibitory effect of irbesartan on renal uric acid transporters. J Pharmacol Sci. 2010;114:115–8.

    Article  PubMed  CAS  Google Scholar 

  64. Miura D, Anzai N, Jutabha P, Chanluang S, He X, Fukutomi T, et al. Human urate transporter 1 (hURAT1) mediates the transport of orotate. J Physiol Sci. 2011;61:253–7.

    Article  PubMed  CAS  Google Scholar 

  65. Wempe MF, Jutabha P, Quade B, Iwen TJ, Frick MM, Ross IR, et al. Developing potent human uric acid transporter 1 (hURAT1) inhibitors. J Med Chem. 2011;54:2701–13.

    Article  PubMed  CAS  Google Scholar 

  66. Ljubojevic M, Herak-Kramberger CM, Hagos Y, Bahn A, Endou H, Burckhardt G, et al. Rat renal cortical OAT1 and OAT3 exhibit gender differences determined by both androgen stimulation and estrogen inhibition. Am J Physiol Renal Physiol. 2004;287:F124–38.

    Article  PubMed  CAS  Google Scholar 

  67. Aslamkhan AG, Han YH, Yang XP, Zalups RK, Pritchard JB. Human renal organic anion transporter 1-dependent uptake and toxicity of mercuric-thiol conjugates in Madin-Darby canine kidney cells. Mol Pharmacol. 2003;63:590–6.

    Article  PubMed  CAS  Google Scholar 

  68. Torres AM, Dnyanmote AV, Bush KT, Wu W, Nigam SK. Deletion of multispecific organic anion transporter Oat1/Slc22a6 protects against mercury-induced kidney injury. J Biol Chem. 2011;286:26391–5.

    Article  PubMed  CAS  Google Scholar 

  69. Wojcikowski K, Johnson DW, Gobe G. Medicinal herbal extracts—renal friend or foe? Part one: the toxicities of medicinal herbs. Nephrology (Carlton). 2004;9:313–8.

    Article  CAS  Google Scholar 

  70. Debelle FD, Vanherweghem JL, Nortier JL. Aristolochic acid nephropathy: a worldwide problem. Kidney Int. 2008;74:158–69.

    Article  PubMed  CAS  Google Scholar 

  71. Lebeau C, Debelle FD, Arlt VM, Pozdzik A, De Prez EG, Phillips DH, et al. Early proximal tubule injury in experimental aristolochic acid nephropathy: functional and histological studies. Nephrol Dial Transplant. 2005;20:2321–32.

    Article  PubMed  Google Scholar 

  72. Pozdzik AA, Salmon IJ, Debelle FD, Decaestecker C, Van den Branden C, Verbeelen D, et al. Aristolochic acid induces proximal tubule apoptosis and epithelial to mesenchymal transformation. Kidney Int. 2008;73:595–607.

    Article  PubMed  CAS  Google Scholar 

  73. Sato N, Takahashi D, Chen SM, Tsuchiya R, Mukoyama T, Yamagata S, et al. Acute nephrotoxicity of aristolochic acids in mice. J Pharm Pharmacol. 2004;56:221–9.

    Article  PubMed  CAS  Google Scholar 

  74. Shibutani S, Dong H, Suzuki N, Ueda S, Miller F, Grollman AP. Selective toxicity of aristolochic acids I and II. Drug Metab Dispos. 2007;35:1217–22.

    Article  PubMed  CAS  Google Scholar 

  75. Lou Y, Li J, Lu Y, Wang X, Jiao R, Wang S, et al. Aristolochic acid-induced destruction of organic ion transporters and fatty acid metabolic disorder in the kidney of rats. Toxicol Lett. 2011;201:72–9.

    Article  PubMed  CAS  Google Scholar 

  76. Russell W, Duthie G. Plant secondary metabolites and gut health: the case for phenolic acids. Proc Nutr Soc. 2011;70:389–96.

    Article  PubMed  CAS  Google Scholar 

  77. Fleschhut J, Kratzer F, Rechkemmer G, Kulling SE. Stability and biotransformation of various dietary anthocyanins in vitro. Eur J Nutr. 2006;45:7–18.

    Article  PubMed  CAS  Google Scholar 

  78. Rababah TM, Ereifej KI, Esoh RB, Al-u’datt MH, Alrababah MA, Yang W. Antioxidant activities, total phenolics and HPLC analyses of the phenolic compounds of extracts from common Mediterranean plants. Nat Prod Res. 2011;25:596–605.

    Article  PubMed  CAS  Google Scholar 

  79. Whitley AC, Sweet DH, Walle T. The dietary polyphenol ellagic acid is a potent inhibitor of hOAT1. Drug Metab Dispos. 2005;33:1097–100.

    Article  PubMed  CAS  Google Scholar 

  80. Saito H. Pathophysiological regulation of renal SLC22A organic ion transporters in acute kidney injury: pharmacological and toxicological implications. Pharmacol Ther. 2009;125:79–91.

    Article  PubMed  CAS  Google Scholar 

  81. Sun H, Frassetto L, Benet LZ. Effects of renal failure on drug transport and metabolism. Pharmacol Ther. 2006;109:1–11.

    Article  PubMed  CAS  Google Scholar 

  82. Enomoto A, Endou H. Roles of organic anion transporters (OATs) and a urate transporter (URAT1) in the pathophysiology of human disease. Clin Exp Nephrol. 2005;9:195–205.

    Article  PubMed  CAS  Google Scholar 

  83. Shobeiri N, Adams MA, Holden RM. Vascular calcification in animal models of CKD: a review. Am J Nephrol. 2010;31:471–81.

    Article  PubMed  Google Scholar 

  84. Cihlar T, Lin DC, Pritchard JB, Fuller MD, Mendel DB, Sweet DH. The antiviral nucleotide analogs cidofovir and adefovir are novel substrates for human and rat renal organic anion transporter 1. Mol Pharmacol. 1999;56:570–80.

    PubMed  CAS  Google Scholar 

  85. Uchino S, Kellum JA, Bellomo R, Doig GS, Morimatsu H, Morgera S, et al. Acute renal failure in critically ill patients: a multinational, multicenter study. JAMA. 2005;294:813–8.

    Article  PubMed  CAS  Google Scholar 

  86. Corrigan G, Ramaswamy D, Kwon O, Sommer FG, Alfrey EJ, Dafoe DC, et al. PAH extraction and estimation of plasma flow in human postischemic acute renal failure. Am J Physiol. 1999;277:F312–8.

    PubMed  CAS  Google Scholar 

  87. Sauvant C, Holzinger H, Gekle M. Prostaglandin E2 inhibits its own renal transport by downregulation of organic anion transporters rOAT1 and rOAT3. J Am Soc Nephrol. 2006;17:46–53.

    Article  PubMed  CAS  Google Scholar 

  88. Myers SI, Wang L, Liu F, Bartula LL. Suprarenal aortic clamping and reperfusion decreases medullary and cortical blood flow by decreased endogenous renal nitric oxide and PGE2 synthesis. J Vasc Surg. 2005;42:524–31.

    Article  PubMed  Google Scholar 

  89. Tokuyama H, Hayashi K, Matsuda H, Kubota E, Honda M, Okubo K, et al. Stenosis-dependent role of nitric oxide and prostaglandins in chronic renal ischemia. Am J Physiol Renal Physiol. 2002;282:F859–65.

    PubMed  CAS  Google Scholar 

  90. Schneider R, Meusel M, Renker S, Bauer C, Holzinger H, Roeder M, et al. Low-dose indomethacin after ischemic acute kidney injury prevents downregulation of Oat1/3 and improves renal outcome. Am J Physiol Renal Physiol. 2009;297:F1614–21.

    Article  PubMed  CAS  Google Scholar 

  91. Hocherl K, Schmidt C, Bucher M. COX-2 inhibition attenuates endotoxin-induced downregulation of organic anion transporters in the rat renal cortex. Kidney Int. 2009;75:373–80.

    Article  PubMed  CAS  Google Scholar 

  92. Welling PG, Dean S, Selen A, Kendall MJ, Wise R. Probenecid: an unexplained effect on cephalosporin pharmacology. Br J Clin Pharmacol. 1979;8:491–5.

    Article  PubMed  CAS  Google Scholar 

  93. Bourke RS, Chheda G, Bremer A, Watanabe O, Tower DB. Inhibition of renal tubular transport of methotrexate by probenecid. Cancer Res. 1975;35:110–6.

    PubMed  CAS  Google Scholar 

  94. Jaehde U, Sorgel F, Reiter A, Sigl G, Naber KG, Schunack W. Effect of probenecid on the distribution and elimination of ciprofloxacin in humans. Clin Pharmacol Ther. 1995;58:532–41.

    Article  PubMed  CAS  Google Scholar 

  95. Honari J, Blair AD, Cutler RE. Effects of probenecid on furosemide kinetics and natriuresis in man. Clin Pharmacol Ther. 1977;22:395–401.

    PubMed  CAS  Google Scholar 

  96. Mulgaonkar A, Venitz J, Sweet DH. Fluoroquinolone disposition: identification of the contribution of renal secretory and reabsorptive drug transporters. Expert Opin Drug Metab Toxicol. 2012;8:553–69.

    Article  PubMed  CAS  Google Scholar 

  97. Cutler MJ, Urquhart BL, Velenosi TJ, Meyer Zu Schwabedissen HE, Dresser GK, Leake BF, et al. In vitro and in vivo assessment of renal drug transporters in the disposition of mesna and dimesna. J Clin Pharmacol. 2012;52:530–42.

    Article  PubMed  CAS  Google Scholar 

  98. Kyrklund C, Backman JT, Neuvonen M, Neuvonen PJ. Gemfibrozil increases plasma pravastatin concentrations and reduces pravastatin renal clearance. Clin Pharmacol Ther. 2003;73:538–44.

    Article  PubMed  CAS  Google Scholar 

  99. Nakagomi-Hagihara R, Nakai D, Tokui T. Inhibition of human organic anion transporter 3 mediated pravastatin transport by gemfibrozil and the metabolites in humans. Xenobiotica. 2007;37:416–26.

    Article  PubMed  CAS  Google Scholar 

  100. Yuan H, Feng B, Yu Y, Chupka J, Zheng JY, Heath TG, et al. Renal organic anion transporter-mediated drug–drug interaction between gemcabene and quinapril. J Pharmacol Exp Ther. 2009;330:191–7.

    Article  PubMed  CAS  Google Scholar 

  101. Giacomini KM, Huang SM, Tweedie DJ. Membrane transporters in drug development. Nat Rev Drug Discov. 2010;9:215–36.

    Article  PubMed  CAS  Google Scholar 

  102. Bhatnagar V, Xu G, Hamilton BA, Truong DM, Eraly SA, Wu W, et al. Analyses of 5′ regulatory region polymorphisms in human SLC22A6 (OAT1) and SLC22A8 (OAT3). J Hum Genet. 2006;51:575–80.

    Article  PubMed  CAS  Google Scholar 

  103. Shima JE, Komori T, Taylor TR, Stryke D, Kawamoto M, Johns SJ, et al. Genetic variants of human organic anion transporter 4 demonstrate altered transport of endogenous substrates. Am J Physiol Renal Physiol. 2010;299:F767–75.

    Article  PubMed  CAS  Google Scholar 

  104. Zhou F, Zhu L, Cui PH, Church WB, Murray M. Functional characterization of nonsynonymous single nucleotide polymorphisms in the human organic anion transporter 4 (hOAT4). Br J Pharmacol. 2010;159:419–27.

    Article  PubMed  CAS  Google Scholar 

  105. Rizwan AN, Burckhardt G. Organic anion transporters of the SLC22 family: biopharmaceutical, physiological, and pathological roles. Pharm Res. 2007;24:450–70.

    Article  PubMed  CAS  Google Scholar 

  106. Han YF, Fan XH, Wang XJ, Sun K, Xue H, Li WJ, et al. Association of intergenic polymorphism of organic anion transporter 1 and 3 genes with hypertension and blood pressure response to hydrochlorothiazide. Am J Hypertens. 2011;24:340–6.

    Article  PubMed  CAS  Google Scholar 

  107. Sakurai Y, Motohashi H, Ueo H, Masuda S, Saito H, Okuda M, et al. Expression levels of renal organic anion transporters (OATs) and their correlation with anionic drug excretion in patients with renal diseases. Pharm Res. 2004;21:61–7.

    Article  PubMed  CAS  Google Scholar 

  108. Sweet DH, Eraly SA, Vaughn DA, Bush KT, Nigam SK. Organic anion and cation transporter expression and function during embryonic kidney development and in organ culture models. Kidney Int. 2006;69:837–45.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas H. Sweet.

Additional information

Guest Editors: Marilyn Morris and Colin Brown

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, L., Sweet, D.H. Renal Organic Anion Transporters (SLC22 Family): Expression, Regulation, Roles in Toxicity, and Impact on Injury and Disease. AAPS J 15, 53–69 (2013). https://doi.org/10.1208/s12248-012-9413-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-012-9413-y

KEY WORDS

Navigation