Skip to main content
Log in

Pilot Investigation on Long-Term Subcutaneous Microdialysis: Proof of Principle in Humans

  • Research Article
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Reliable drug concentration measurements at the target site are increasingly demanded and can be achieved by microdialysis. The aim of this pilot study was to demonstrate the proof of principle of long-term subcutaneous microdialysis in humans. For long-term microdialysis, a special setting implementing both concentric and linear catheters has been developed ensuring good clinical practice compliance, tolerability, and convenience for participants and personnel. As a model compound, moderately lipophilic voriconazole was selected as a well-characterized drug in in vitro microdialysis experiments. Multiple in vivo relative recovery (RR) determinations for microdialysis were performed by retrodialysis during the entire study (n = 48 samples). Continuous microdialysis was successfully applied and well tolerated over 87 h in three adults for the first time. RR revealed low intra-individual (coefficient of variation (CV) = 4.4–12.5%) and inter-individual variability (CV = 4.3–12.5%) across all samples and catheters. Lower RR values were consistently determined for linear catheters. One catheter leakage was managed without an impact on the reliability of the RR values. Overall, RR values were calculated to be 73.3% (linear: CV = 18.5%, n = 23) and 84.9% (concentric: CV = 5.6%, n = 23). Long-term microdialysis application over almost 4 days was feasible by reliable multiple RR (proof of principle), well tolerated, and reduced the burden in humans avoiding several catheter insertions, thereby allowing to monitor concentration–time courses continuously. Moreover, a moderately lipophilic drug has been proven suitable for in vivo microdialysis, as previously suggested by in vitro microdialysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

REFERENCES

  1. Plock N, Kloft C. Microdialysis—theoretical background and recent implementation in applied life-sciences. Eur J Pharm Sci. 2005;25(1):1–24.

    Article  PubMed  CAS  Google Scholar 

  2. Chaurasia CS, Muller M, Bashaw ED, Benfeldt E, Bolinder J, Bullock R, et al. AAPS-FDA Workshop White Paper: microdialysis principles, application, and regulatory perspectives. J Clin Pharmacol. 2007;47(5):589–603.

    Article  PubMed  CAS  Google Scholar 

  3. Buerger C, Plock N, Dehghanyar P, Joukhadar C, Kloft C. Pharmacokinetics of unbound linezolid in plasma and tissue interstitium of critically ill patients after multiple dosing using microdialysis. Antimicrob Agents Chemother. 2006;50(7):2455–63.

    Article  PubMed  CAS  Google Scholar 

  4. Dehghanyar P, Burger C, Zeitlinger M, Islinger F, Kovar F, Muller M, et al. Penetration of linezolid into soft tissues of healthy volunteers after single and multiple doses. Antimicrob Agents Chemother. 2005;49(6):2367–71.

    Article  PubMed  CAS  Google Scholar 

  5. Gattringer R, Urbauer E, Traunmuller F, Zeitlinger M, Dehghanyar P, Zeleny P, et al. Pharmacokinetics of telithromycin in plasma and soft tissues after single-dose administration to healthy volunteers. Antimicrob Agents Chemother. 2004;48(12):4650–3.

    Article  PubMed  CAS  Google Scholar 

  6. Persky AM, Muller M, Derendorf H, Grant M, Brazeau GA, Hochhaus G. Single- and multiple-dose pharmacokinetics of oral creatine. J Clin Pharmacol. 2003;43(1):29–37.

    Article  PubMed  CAS  Google Scholar 

  7. Traunmuller F, Fille M, Thallinger C, Joukhadar C. Multiple-dose pharmacokinetics of telithromycin in peripheral soft tissues. Int J Antimicrob Agents. 2009;34(1):72–5.

    Article  PubMed  Google Scholar 

  8. Traunmuller F, Zeitlinger M, Zeleny P, Muller M, Joukhadar C. Pharmacokinetics of single- and multiple-dose oral clarithromycin in soft tissues determined by microdialysis. Antimicrob Agents Chemother. 2007;51(9):3185–9.

    Article  PubMed  Google Scholar 

  9. Arner P, Bolinder J. Microdialysis of adipose tissue. J Intern Med. 1991;230(4):381–6.

    Article  PubMed  CAS  Google Scholar 

  10. Baumeister FA, Rolinski B, Busch R, Emmrich P. Glucose monitoring with long-term subcutaneous microdialysis in neonates. Pediatrics. 2001;108(5):1187–92.

    Article  PubMed  CAS  Google Scholar 

  11. Bolinder J, Ungerstedt U, Arner P. Microdialysis measurement of the absolute glucose concentration in subcutaneous adipose tissue allowing glucose monitoring in diabetic patients. Diabetologia. 1992;35(12):1177–80.

    Article  PubMed  CAS  Google Scholar 

  12. Bolinder J, Ungerstedt U, Arner P. Long-term continuous glucose monitoring with microdialysis in ambulatory insulin-dependent diabetic patients. Lancet. 1993;342(8879):1080–5.

    Article  PubMed  CAS  Google Scholar 

  13. Edsander-Nord A, Rojdmark J, Wickman M. Metabolism in pedicled and free TRAM flaps: a comparison using the microdialysis technique. Plast Reconstr Surg. 2002;109(2):664–73.

    Article  PubMed  Google Scholar 

  14. Hashiguchi Y, Sakakida M, Nishida K, Uemura T, Kajiwara K, Shichiri M. Development of a miniaturized glucose monitoring system by combining a needle-type glucose sensor with microdialysis sampling method. Long-term subcutaneous tissue glucose monitoring in ambulatory diabetic patients. Diabetes Care. 1994;17(5):387–96.

    Article  PubMed  CAS  Google Scholar 

  15. Hildingsson U, Sellden H, Ungerstedt U, Marcus C. Microdialysis for metabolic monitoring in neonates after surgery. Acta Paediatr. 1996;85(5):589–94.

    Article  PubMed  CAS  Google Scholar 

  16. Holzinger A, Bonfig W, Kusser B, Eggermann T, Muller H, Munch HG. Use of long-term microdialysis subcutaneous glucose monitoring in the management of neonatal diabetes. A first case report. Biol Neonate. 2006;89(2):88–91.

    Article  PubMed  Google Scholar 

  17. Horal M, Ungerstedt U, Persson B, Westgren M, Marcus C. Metabolic adaptation in IUGR neonates determined with microdialysis—a pilot study. Early Hum Dev. 1995;42(1):1–14.

    Article  PubMed  CAS  Google Scholar 

  18. Lutgers HL, Hullegie LM, Hoogenberg K, Sluiter WJ, Dullaart RP, Wientjes KJ, et al. Microdialysis measurement of glucose in subcutaneous adipose tissue up to three weeks in type 1 diabetic patients. Neth J Med. 2000;57(1):7–12.

    Article  PubMed  CAS  Google Scholar 

  19. Persson L, Valtysson J, Enblad P, Warme PE, Cesarini K, Lewen A, et al. Neurochemical monitoring using intracerebral microdialysis in patients with subarachnoid hemorrhage. J Neurosurg. 1996;84(4):606–16.

    Article  PubMed  CAS  Google Scholar 

  20. Hillered L, Valtysson J, Enblad P, Persson L. Interstitial glycerol as a marker for membrane phospholipid degradation in the acutely injured human brain. J Neurol Neurosurg Psychiatry. 1998;64(4):486–91.

    Article  PubMed  CAS  Google Scholar 

  21. Hutchinson PJ, O’Connell MT, Maskell LB, Pickard JD. Monitoring by subcutaneous microdialysis in neurosurgical intensive care. Acta Neurochir Suppl. 1999;75:57–9.

    Article  PubMed  CAS  Google Scholar 

  22. During MJ, Fried I, Leone P, Katz A, Spencer DD. Direct measurement of extracellular lactate in the human hippocampus during spontaneous seizures. J Neurochem. 1994;62(6):2356–61.

    Article  PubMed  CAS  Google Scholar 

  23. Kennergren C, Mantovani V, Lonnroth P, Nystrom B, Berglin E, Hamberger A. Monitoring of extracellular aspartate aminotransferase and troponin T by microdialysis during and after cardioplegic heart arrest. Cardiology. 1999;92(3):162–70.

    Article  PubMed  CAS  Google Scholar 

  24. Konings IR, Engels FK, Sleijfer S, Verweij J, Wiemer EA, Loos WJ. Application of prolonged microdialysis sampling in carboplatin-treated cancer patients. Cancer Chemother Pharmacol. 2009;64(3):509–16.

    Article  PubMed  CAS  Google Scholar 

  25. Kopacz DJ, Bernards CM, Allen HW, Landau C, Nandy P, Wu D, et al. A model to evaluate the pharmacokinetic and pharmacodynamic variables of extended-release products using in vivo tissue microdialysis in humans: bupivacaine-loaded microcapsules. Anesth Analg. 2003;97(1):124–31.

    Article  PubMed  CAS  Google Scholar 

  26. Stahle L, Alm C, Ekquist B, Lundquist B, Tomson T. Monitoring free extracellular valproic acid by microdialysis in epileptic patients. Ther Drug Monit. 1996;18(1):14–8.

    Article  PubMed  CAS  Google Scholar 

  27. Lindberger M, Tomson T, Stahle L. Validation of microdialysis sampling for subcutaneous extracellular valproic acid in humans. Ther Drug Monit. 1998;20(3):358–62.

    Article  PubMed  CAS  Google Scholar 

  28. Simmel F, Kloft C. Microdialysis feasibility investigations with the non-hydrophilic antifungal voriconazole for potential applications in nonclinical and clinical settings. Int J Clin Pharmacol Ther. 2010;48(11):695–704.

    Google Scholar 

  29. World Medical Association. Declaration of Helsinki Ethical Principles for Medical Research Involving Human Subjects. 1964 (amended by the 59th WMA General Assembly, Seoul, October 2008). http://www.wma.net/en/30publications/10policies/b3/index.html. Accessed 27 Oct 2009.

  30. Note for Guidance on Good Clinical Practice (CPMP/ICH/135/95) Step 5. 1996.

  31. Stahle L, Arner P, Ungerstedt U. Drug distribution studies with microdialysis. III: Extracellular concentration of caffeine in adipose tissue in man. Life Sci. 1991;49(24):1853–8.

    Article  PubMed  CAS  Google Scholar 

  32. Simmel F, Soukup J, Zoerner A, Radke J, Kloft C. Development and validation of an efficient HPLC method for quantification of voriconazole in plasma and microdialysate reflecting an important target site. Anal Bioanal Chem. 2008;392(3):479–88.

    Article  PubMed  CAS  Google Scholar 

  33. Guidance for Industry. Bioanalytical Method Validation. Food and Drug Administration. 2001. http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM070107.pdf. Accessed 27 October 2009.

  34. Saunte DM, Simmel F, Frimodt-Moller N, Stolle LB, Svejgaard EL, Haedersdal M, et al. In vivo efficacy and pharmacokinetics of voriconazole in an animal model of dermatophytosis. Antimicrob Agents Chemother. 2007;51(9):3317–21.

    Article  PubMed  CAS  Google Scholar 

  35. Araujo BV, Conrado DJ, Palma EC, Dalla Costa T. Validation of rapid and simple LC-MS/MS method for determination of voriconazole in rat plasma. J Pharm Biomed Anal. 2007;44(4):985–90.

    Article  PubMed  CAS  Google Scholar 

  36. Araujo BV, Silva CF, Haas SE, Dalla Costa T. Microdialysis as a tool to determine free kidney levels of voriconazole in rodents: a model to study the technique feasibility for a moderately lipophilic drug. J Pharm Biomed Anal. 2008;47(4–5):876–81.

    Article  PubMed  CAS  Google Scholar 

  37. Joukhadar C, Thallinger C, Poppl W, Kovar F, Konz KH, Joukhadar SM, et al. Concentrations of voriconazole in healthy and inflamed lung in rats. Antimicrob Agents Chemother. 2009;53(6):2684–6.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENT

The authors wish to thank Dorothea Frenzel for her excellent technical support during bioanalysis and Matthias Stezycki for illustration of the long-term microdialysis setting.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charlotte Kloft.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simmel, F., Kirbs, C., Erdogan, Z. et al. Pilot Investigation on Long-Term Subcutaneous Microdialysis: Proof of Principle in Humans. AAPS J 15, 95–103 (2013). https://doi.org/10.1208/s12248-012-9412-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-012-9412-z

KEY WORDS

Navigation