Skip to main content
Log in

Rationalizing Structure and Target Relationships between Current Drugs

  • Research Article
  • Theme: New Paradigms in Pharmaceutical Sciences: In Silico Drug Discovery
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

A recent analysis of structure and target relationships between current drugs and bioactive compounds has revealed that only a small fraction of drugs that are active against the same or overlapping targets are involved in substructure relationships and/or share the same topology. By contrast, structurally related drugs displayed a tendency to preferentially act against different targets. For bioactive compounds, opposite trends were observed. These surprising findings arising from the global analysis have now been examined in detail by analyzing structure and target relationships between drugs at the level of individual targets and individual drugs and by comparing the results of local (target- or drug-based) and global relationship analysis. On the basis of target-based analysis, on average, only 14% of drugs active against a given target form well-defined structural relationships. In addition, drug-based analysis revealed that on average 72% of all structurally related drugs have no or at most 20% target overlap. Taken together, the results of our current analysis at the level of single targets and drugs rationalize their unexpected structure and target relationships in a consistent manner. These findings also have implications for ligand binding characteristics of popular drug targets and for frequently observed polypharmacological drug behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

REFERENCES

  1. Ursu O, Rayan A, Goldblum A, Oprea TI. Understanding drug-likeness. WIREs Comp Mol Sci. 2011;1(5):760–81. doi:10.1002/wcms.52.

    Article  CAS  Google Scholar 

  2. Hopkins AL. Network pharmacology: the next paradigm in drug discovery. Nat Chem Biol. 2008;4(11):682–90. doi:10.1038/nchembio.118.

    Article  PubMed  CAS  Google Scholar 

  3. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 1997;23(1–3):3–25. doi:10.1016/S0169-409X(96)00423-1.

    Article  CAS  Google Scholar 

  4. Bickerton GR, Paolini GV, Besnard J, Muresan S, Hopkins AL. Quantifying the chemical beauty of drugs. Nat Chem. 2012;4(2):90–8. doi:10.1038/nchem.1243.

    Article  PubMed  CAS  Google Scholar 

  5. Hu Y, Stumpfe D, Bajorath J. Lessons learned from molecular scaffold analysis. J Chem Inf Model. 2011;51(8):1742–53. doi:10.1021/ci200179y.

    Article  PubMed  CAS  Google Scholar 

  6. Hu Y, Bajorath J. Many structurally related drugs bind different targets whereas distinct drugs display significant target overlap. RSC Adv. 2012;2(8):3481–9. doi:10.1039/C2RA01345B.

    Article  CAS  Google Scholar 

  7. Johnson MA, Maggiora GM, editors. Concepts and applications of molecular similarity. Wiley: New York; 1990.

    Google Scholar 

  8. Knox C, Law V, Jewison T, Liu P, Ly S, Frolkis A, Pon A, Banco K, Mak C, Neveu V, Djoumbou Y, Eisner R, Guo AC, Wishart DS. DrugBank 3.0: a comprehensive resource for ‘omics’ research on drugs. Nucleic Acids Res. 2011;39(Database issue):D1035–41. doi:10.1093/nar/gkq1126.

    Article  PubMed  Google Scholar 

  9. Gaulton A, Bellis LJ, Bento AP, Chambers J, Davies M, Hersey A, Light Y, McGlinchey S, Michalovich D, Al-Lazikani B, Overington JP. ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res. 2012;40(Database issue):D1100–7. doi:10.1093/nar/gkr777.

    Article  PubMed  CAS  Google Scholar 

  10. ChEMBL; European Bioinformatics Institute (EBI): Cambridge, 2011. http:/www.ebi.ac.uk/chembl/ (accessed September 1, 2011).

  11. Bemis GW, Murcko MA. The properties of known drugs. 1. Molecular frameworks. J Med Chem. 1996;39(15):2887–93. doi:10.1021/jm9602928.

    Article  PubMed  CAS  Google Scholar 

  12. Xu YJ, Johnson M. Using molecular equivalence numbers to visually explore structure features that distinguish chemical libraries. J Chem Inf Comput Sci. 2002;42(4):912–26. doi:10.1021/ci025535l.

    Article  PubMed  CAS  Google Scholar 

  13. Maggiora GM. On outliers and activity cliffs—why QSAR often disappoints. J Chem Inf Model. 2006;46(4):1535. doi:10.1021/ci060117s.

    Article  PubMed  CAS  Google Scholar 

  14. Keiser MJ, Irwin JJ, Shoichet BK. The chemical basis of pharmacology. Biochemistry. 2010;49(48):10267–76. doi:10.1021/bi101540g.

    Article  PubMed  CAS  Google Scholar 

  15. Müller G. Medicinal chemistry of target family-directed masterkeys. Drug Discov Today. 2003;8(15):681–91. doi:10.1016/S1359-6446(03)02781-8.

    Article  PubMed  Google Scholar 

  16. Hu Y, Wassermann AM, Lounkine E, Bajorath J. Systematic analysis of public domain compound potency data identifies selective molecular scaffolds across druggable target families. J Med Chem. 2010;53(2):752–8. doi:10.1021/jm9014229.

    Article  PubMed  CAS  Google Scholar 

  17. Hu Y, Bajorath J. Polypharmacology directed compound data mining: identification of promiscuous chemotypes with different activity profiles and comparison to approved drugs. J Chem Inf Model. 2010;50(12):2112–8. doi:10.1021/ci1003637.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Bajorath.

Additional information

Guest Editor: Xiang-Qun Xie

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, Y., Bajorath, J. Rationalizing Structure and Target Relationships between Current Drugs. AAPS J 14, 764–771 (2012). https://doi.org/10.1208/s12248-012-9392-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-012-9392-z

KEY WORDS

Navigation