Skip to main content

Advertisement

Log in

Lipidic Systems for In Vivo siRNA Delivery

  • Review Article
  • Theme: siRNA and microRNA: From Target Validation to Therapy
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

The ability of small-interfering RNA (siRNA) to silence specific target genes not only offers a tool to study gene function but also represents a novel approach for the treatment of various human diseases. Its clinical use, however, has been severely hampered by the lack of delivery of these molecules to target cell populations in vivo due to their instability, inefficient cell entry, and poor pharmacokinetic profile. Various delivery vectors including liposomes, polymers, and nanoparticles have thus been developed in order to circumvent these problems. This review presents a comprehensive overview of the barriers and recent progress for both local and systemic delivery of therapeutic siRNA using lipidic vectors. Different strategies for formulating these siRNA-loaded lipid particles as well as the general concern about their safe use in vivo will also be discussed. Finally, current advances in the targeted delivery of siRNA and their impacts on the field of RNA interference (RNAi)-based therapy will be presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ALT:

Alanine transaminase

AST:

Aspartate transaminase

AMD:

Age-related macular degeneration

ApoB:

Apoliproprotein B

β7I:

β7 integrin

BNDF:

Brain-derived neurotrophic factor

bp:

Base pair

CA:

Cholesteryl-aminoxy lipid

CDAN:

N 1-cholesteryloxycarbonyl-3,7-diazanonane-1,9-diamine lipid

CyD1:

Cyclin D1

DLinDMA:

1,2-DiLinoleyloxy-N,N-dimethylaminopropane

DNA:

Deoxyribonucleic acid

DODMA:

N-(2,3-dioleyloxy)propyl-N,N-dimethylammonium chloride

DOPC:

Dioleoylphosphatidylcholine

DOPE:

Dioleoylphosphatidylethanolamine

DODAP:

1,2-Dioleoyl-3-dimethyammonium propane

DOTAP:

1,2-Dioleoyl-3-trimethyammonium propane

DSPC:

1,2-Distearoyl-l-3-glyceryl-phosphatidylcholine

DSPE:

Di-stearoyl-phosphatidyl-ethanolamine

dsRNA:

Double-stranded RNA

EBOV:

Ebola virus

eIF5A:

Eukaryotic translation initiation factor 5A

EHCO:

(1-Aminoethyl)iminobis[N-(oleicylcysteinylhistinyl-1-aminoethyl)propionamide]

EHV:

Equine herpes virus type 1

EGFR:

Epidermal growth factor receptor

EphA2:

Eph receptor A2

F105-P:

Antibody fusion protein targeting HIV-infected cells

FVII:

Factor VII

HBsAg:

Hepatitis B surface antigen

HBV:

Hepatitis B virus

HCV:

Hepatitis C virus

HDL:

High-density lipoprotein

HFDM:

Hydration of freeze-dried matrix

HSV:

Herpes simplex virus

HIF:

Hypoxia-inducible factor

HIV:

Human immunodeficiency virus

HPIV:

Human parainfluenzavirus

Htt:

Huntingtin

Id2:

Inhibitor of DNA-binding-2

IFN:

Interferon

IL:

Interleukin

IP:

Intraperitoneal

IV:

Intravenous

LDL:

Low-density lipoprotein

LFA-1:

Lymphocyte function-associated antigen-1

LIC-101:

Cationic liposomes consist of 2-O-(2-diethylaminoethyl)-carbamoyl-1,3-O-dioleoylglyecerol and egg yolk phosphatidylcholine

LPD:

Lipid-protamine-DNA nanoparticles

LPH:

Lipid-protamine-hyaluronic acid nanoparticles

mRNA:

Messenger RNA

NP:

Nanoparticles

NTS:

Neurotensin receptor 2

OH-Chol:

Cholesteryl-3β-carboxyamidoethylene-N-hydroxyethylamin

PEG:

Polyethylene glycol

PEI:

Polyethylenimine

PLK1:

Polo-like kinase 1

RES:

Reticuloendothelial system

RGD:

Arg-Gly-Asp

RhoA:

Ras homolog gene family member A

RNA:

Ribonucleic acid

RNAi:

RNA interference

RSV:

Respiratory syncytial virus

siRNA:

Short-interfering RNA

SAP:

Self-assembling process

S1P:

Sphingosine 1-phosphate

SNALP:

Stable nucleic acid-lipid particles

STAT:

Signal transducers and activators of transcription

SVF:

Spontaneous vesicle formation

Tf:

Transferrin

TGF:

Transforming growth factor

TNF:

Tumor necrosis factor

Ubc:

Ubiquitin-conjugating enzyme

VEGF:

Vascular endothelial growth factor

References

  1. Hacein-Bey-Abina S, Von Kalle C, Schmidt M, McCormack MP, Wulffraat N, Leboulch P, et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science. 2003;302:415–9.

    Article  PubMed  CAS  Google Scholar 

  2. Landen CN, Chavez-Reyes A, Bucana C, Schmandt R, Deavers MT, Lopez-Berestein G, et al. Therapeutic EphA2 gene targeting in vivo using neutral liposomal small interfering RNA delivery. Cancer Res. 2005;65:6910–8.

    Article  PubMed  CAS  Google Scholar 

  3. Giladi H, Ketzinel-Gilad M, Rivkin L, Felig Y, Nussbaum O, Galun E. Small interfering RNA inhibits hepatitis B virus replication in mice. Mol Ther. 2003;8:769–76.

    Article  PubMed  CAS  Google Scholar 

  4. Diaz-Hernandez M, Torres-Peraza J, Salvatori-Abarca A, Moran MA, Gomez-Ramos P, Alberch J, et al. Full motor recovery despite striatal neuron loss and formation of irreversible amyloid-like inclusions in a conditional mouse model of Huntington’s disease. J Neurosci. 2005;25:9773–81.

    Article  PubMed  CAS  Google Scholar 

  5. Santel A, Aleku M, Keil O, Endruschat J, Esche V, Durieux B, et al. RNA interference in the mouse vascular endothelium by systemic administration of siRNA-lipoplexes for cancer therapy. Gene Ther. 2006;13:1360–70.

    Article  PubMed  CAS  Google Scholar 

  6. Nabel G, Nable E, Yang Z, Fox B, Plautz G, Gao X, et al. Direct gene transfer with DNA-liposome complexes in melanoma: Expression, biologic activity, and lack of toxicity in humans. Proc Natl Acad Sci USA. 1993;90:11307–11.

    Article  PubMed  CAS  Google Scholar 

  7. Caplen NJ, Alton E, Middleton PG, Dorin JR, Stevenson BJ, Gao X, et al. Liposome-mediated CFTR gene transfer to the nasal epithelium of patients with cystic fibrosis. Nat Med. 1995;1:39–46.

    Article  PubMed  CAS  Google Scholar 

  8. McLachlan G, Ho LP, DavidsonSmith H, Samways J, Davidson H, Stevenson BJ, et al. Laboratory and clinical studies in support of cystic fibrosis gene therapy using pCMV-CFTR-DOTAP. Gene Ther. 1996;3:1113–23.

    PubMed  CAS  Google Scholar 

  9. Gill DR, Southern KW, Mofford KA, Seddon T, Huang L, Sorgi F, et al. A placebo-controlled study of liposome-mediated gene transfer to the nasal epithelium of patients with cystic fibrosis. Gene Ther. 1997;4:199–209.

    Article  PubMed  CAS  Google Scholar 

  10. Porteous DJ, Dorin JR, McLachlan G, Davidson-Smith H, Davidson H, Stevenson BJ, et al. Evidence for safety and efficacy of DOTAP cationic liposome mediated CFTR gene transfer to the nasal epithelium of patients with cystic fibrosis. Gene Ther. 1997;4:210–8.

    Article  PubMed  CAS  Google Scholar 

  11. Bisanz K, Yu J, Edlund M, Spohn B, Hung MC, Chung LW, et al. Targeting ECM-integrin interaction with liposome-encapsulated small interfering RNAs inhibits the growth of human prostate cancer in a bone xenograft imaging model. Mol Ther. 2005;12:634–43.

    Article  PubMed  CAS  Google Scholar 

  12. Yoshizawa T, Hattori Y, Hakoshima M, Koga K, Maitani Y. Folate-linked lipid-based nanoparticles for synthetic siRNA delivery in KB tumor xenografts. Eur J Pharm Biopharm. 2008;70(3):718–725.

    Article  PubMed  CAS  Google Scholar 

  13. Huang YH, Bao Y, Peng W, Goldberg M, Love K, Bumcrot DA, et al. Claudin-3 gene silencing with siRNA suppresses ovarian tumor growth and metastasis. Proc Natl Acad Sci U S A. 2009;106:3426–30.

    Article  PubMed  CAS  Google Scholar 

  14. Chae SS, Paik JH, Furneaux H, Hla T. Requirement for sphingosine 1-phosphate receptor-1 in tumor angiogenesis demonstrated by in vivo RNA interference. J Clin Invest. 2004;114:1082–9.

    PubMed  CAS  Google Scholar 

  15. Pille JY, Denoyelle C, Varet J, Bertrand JR, Soria J, Opolon P, et al. Anti-RhoA and anti-RhoC siRNAs inhibit the proliferation and invasiveness of MDA-MB-231 breast cancer cells in vitro and in vivo. Mol Ther. 2005;11:267–74.

    Article  PubMed  CAS  Google Scholar 

  16. Qureshi ST, Zhang X, Aberg E, Bousette N, Giaid A, Shan P, et al. Inducible activation of TLR4 confers resistance to hyperoxia-induced pulmonary apoptosis. J Immunol. 2006;176:4950–8.

    PubMed  CAS  Google Scholar 

  17. Perl M, Chung CS, Lomas-Neira J, Rachel TM, Biffl WL, Cioffi WG, et al. Silencing of Fas, but not caspase-8, in lung epithelial cells ameliorates pulmonary apoptosis, inflammation, and neutrophil influx after hemorrhagic shock and sepsis. Am J Pathol. 2005;167:1545–59.

    PubMed  CAS  Google Scholar 

  18. Lomas-Neira JL, Chung CS, Wesche DE, Perl M, Ayala A. In vivo gene silencing (with siRNA) of pulmonary expression of MIP-2 versus KC results in divergent effects on hemorrhage-induced, neutrophil-mediated septic acute lung injury. J Leukoc Biol. 2005;77:846–53.

    Article  PubMed  CAS  Google Scholar 

  19. Li BJ, Tang Q, Cheng D, Qin C, Xie FY, Wei Q, et al. Using siRNA in prophylactic and therapeutic regimens against SARS coronavirus in Rhesus macaque. Nat Med. 2005;11:944–51.

    PubMed  CAS  Google Scholar 

  20. Castanottoand D, Rossi JJ. The promises and pitfalls of RNA-interference-based therapeutics. Nature. 2009;457:426–33.

    Article  CAS  Google Scholar 

  21. Kleinman ME, Yamada K, Takeda A, Chandrasekaran V, Nozaki M, Baffi JZ, et al. Sequence- and target-independent angiogenesis suppression by siRNA via TLR3. Nature. 2008;452:591–7.

    Article  PubMed  CAS  Google Scholar 

  22. Bitko V, Musiyenko A, Shulyayeva O, Barik S. Inhibition of respiratory viruses by nasally administered siRNA. Nat Med. 2005;11:50–5.

    Article  PubMed  CAS  Google Scholar 

  23. Zhang Y, Cristofaro P, Silbermann R, Pusch O, Boden D, Konkin T, et al. Engineering mucosal RNA interference in vivo. Mol Ther. 2006;14:336–42.

    Article  PubMed  CAS  Google Scholar 

  24. Wu Y, Navarro F, Lal A, Basar E, Pandey RK, Manoharan M, et al. Durable protection from Herpes Simplex Virus-2 transmission following intravaginal application of siRNAs targeting both a viral and host gene. Cell Host Microbe. 2009;5:84–94.

    Article  PubMed  CAS  Google Scholar 

  25. Dokka S, Toledo D, Shi X, Castranova V, Rojanasakul Y. Oxygen radical-mediated pulmonary toxicity induced by some cationic liposomes. Pharm Res. 2000;17:521–5.

    Article  PubMed  CAS  Google Scholar 

  26. Filionand MC, Phillips NC. Toxicity and immunomodulatory activity of liposomal vectors formulated with cationic lipids toward immune effector cells. Biochim Biophys Acta. 1997;1329:345–56.

    Article  Google Scholar 

  27. Dass C. Lipoplex-mediated delivery of nucleic acids: factors affecting in vivo transfection. J Mol Med. 2004;82:579–91.

    Article  PubMed  CAS  Google Scholar 

  28. Soutschek J, Akinc A, Bramlage B, Charisse K, Constien R, Donoghue M, et al. Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature. 2004;432:173–8.

    Article  PubMed  CAS  Google Scholar 

  29. Wolfrum C, Shi S, Jayaprakash KN, Jayaraman M, Wang G, Pandey RK, et al. Mechanisms and optimization of in vivo delivery of lipophilic siRNAs. Nat Biotechnol. 2007;25:1149–57.

    Article  PubMed  CAS  Google Scholar 

  30. Spagnou S, Miller AD, Keller M. Lipidic carriers of siRNA: differences in the formulation, cellular uptake, and delivery with plasmid DNA. Biochemistry. 2004;43:13348–56.

    Article  PubMed  CAS  Google Scholar 

  31. Lee MJ, Cho SS, You JR, Lee Y, Kang BD, Choi JS, et al. Intraperitoneal gene delivery mediated by a novel cationic liposome in a peritoneal disseminated ovarian cancer model. Gene Ther. 2002;9:859–66.

    Article  PubMed  CAS  Google Scholar 

  32. Islam RU, Hean J, van Otterlo WA, de Koning CB, Arbuthnot P. Efficient nucleic acid transduction with lipoplexes containing novel piperazine- and polyamine-conjugated cholesterol derivatives. Bioorg Med Chem Lett. 2009;19:100–3.

    Article  PubMed  CAS  Google Scholar 

  33. Sorensen D, Leirdal M, Sioud M. Gene silencing by systemic delivery of synthetic siRNAs in adult mice. J Mol Biol. 2003;327:761–6.

    Article  PubMed  CAS  Google Scholar 

  34. Geisbert TW, Hensley LE, Kagan E, Yu EZ, Geisbert JB, Daddario-DiCaprio K,et al. Postexposure protection of guinea pigs against a lethal ebola virus challenge is conferred by RNA interference. J Infect Dis. 2006;193:1650–7.

    Article  PubMed  CAS  Google Scholar 

  35. Gray MJ, Dallas NA, Van Buren G, Xia L, Yang AD, Somcio RJ, et al. Therapeutic targeting of Id2 reduces growth of human colorectal carcinoma in the murine liver. Oncogene. 2008;27:7192–200.

    Article  PubMed  CAS  Google Scholar 

  36. Gray MJ, Van Buren G, Dallas NA, Xia L, Wang X, Yang AD, et al. Therapeutic targeting of neuropilin-2 on colorectal carcinoma cells implanted in the murine liver. J Natl Cancer Inst. 2008;100:109–20.

    Article  PubMed  CAS  Google Scholar 

  37. Landen C, Merritt W, Mangala L, Sanguino A, Bucana C, Lu C, et al. Intraperitoneal delivery of liposomal siRNA for therapy of advanced ovarian cancer. Cancer Biol Ther. 2006;5:1708–1713.

    PubMed  CAS  Google Scholar 

  38. Markman M. Intraperitoneal chemotherapy as primary treatment of advanced ovarian cancer: efficacy, toxicity, and future directions. Rev Recent Clin Trials. 2007;2:169–73.

    Article  PubMed  CAS  Google Scholar 

  39. Duxbury MS, Ito H, Zinner MJ, Ashley SW, Whang EE. EphA2: a determinant of malignant cellular behavior and a potential therapeutic target in pancreatic adenocarcinoma. Oncogene. 2004;23:1448–56.

    Article  PubMed  CAS  Google Scholar 

  40. Duxbury MS, Ito H, Benoit E, Zinner MJ, Ashley SW, Whang EE. RNA interference targeting focal adhesion kinase enhances pancreatic adenocarcinoma gemcitabine chemosensitivity. Biochem Biophys Res Commun. 2003;311:786–92.

    Article  PubMed  CAS  Google Scholar 

  41. Duxbury MS, Matros E, Ito H, Zinner MJ, Ashley SW, Whang EE. Systemic siRNA-mediated gene silencing: a new approach to targeted therapy of cancer. Ann Surg. 2004;240:667–76.

    PubMed  Google Scholar 

  42. Ogris M, Brunner S, Schuller S, Kircheis R, Wagner E. PEGylated DNA/transferrin-PEI complexes: reduced interaction with blood components, extended circulation in blood and potential for systemic gene delivery. Gene Ther. 1999;6:595–605.

    Article  PubMed  CAS  Google Scholar 

  43. Wu SY, Putral LN, Liang M, Chang HI, Davies NM, McMillan NA. Development of a Novel Method for Formulating Stable siRNA-Loaded Lipid Particles for In vivo Use. Pharm Res. 2009;26:512–22.

    Article  PubMed  CAS  Google Scholar 

  44. Yuan H, Lanting L, Xu ZG, Li SL, Swiderski P, Putta S, et al. Effects of cholesterol-tagged small interfering RNAs targeting 12/15-lipoxygenase on parameters of diabetic nephropathy in a mouse model of type 1 diabetes. Am J Physiol Renal Physiol. 2008;295:F605–17.

    Article  PubMed  CAS  Google Scholar 

  45. Li S, Huang L. Fuctional polymorphism of liposomal gene delivery vectors: lipoplex and lipopolyplex. In: Janoff A, editor. Liposomes: rational design. New York: Marcel Dekker; 1999. p. 89–124.

    Google Scholar 

  46. Semple S, Klimuk S, Harasym T, Santos N, Ansell S, Wong K, et al. Efficient encapsulation of antisense oligonucleotides in lipid vesicles using ionizable aminolipids: formation of novel small multilamellar vesicle structures. Biochimica et Biophysica Acta. 2001;1510:152–66.

    Article  PubMed  CAS  Google Scholar 

  47. T. Herringson, J.G. Altin. Convenient targeting of stealth siRNA-lipoplexes to cells with chelator lipid-anchored molecules. J Control Release (2009), in press.

  48. Hobeland S, Aigner A. Nonviral delivery platform for therapeutic RNAi: pegylated siRNA/cationic liposome complexes for targeting of the proto-oncogene bcl-2. Future Oncol. 2009;5:13–7.

    Article  Google Scholar 

  49. Yu W, Pirollo KF, Rait A, Yu B, Xiang LM, Huang WQ, et al. A sterically stabilized immunolipoplex for systemic administration of a therapeutic gene. Gene Ther. 2004;11:1434–40.

    Article  PubMed  CAS  Google Scholar 

  50. Mishra S, Webster P, Davis ME. PEGylation significantly affects cellular uptake and intracellular trafficking of non-viral gene delivery particles. Eur J Cell Biol. 2004;83:97–111.

    Article  PubMed  CAS  Google Scholar 

  51. Shi F, Wasungu L, Nomden A, Stuart MC, Polushkin E, Engberts JB, et al. Interference of poly(ethylene glycol)-lipid analogues with cationic-lipid-mediated delivery of oligonucleotides; role of lipid exchangeability and non-lamellar transitions. Biochem J. 2002;366:333–41.

    PubMed  CAS  Google Scholar 

  52. Jeffs LB, Palmer LR, Ambegia EG, Giesbrecht C, Ewanick S, MacLachlan I. A scalable, extrusion-free method for efficient liposomal encapsulation of plasmid DNA. Pharm Res. 2005;22:362–72.

    Article  PubMed  CAS  Google Scholar 

  53. Morrissey D, Lockridge J, Shaw L, Blanchard K, Jensen K, Breen W, et al. Potent and persistent in vivo anti-HBV activity of chemically modified siRNAs. Nat Biotechnol. 2005;23:1002–7.

    Article  PubMed  CAS  Google Scholar 

  54. Zimmermann TS, Lee ACH, Akinc A, Bramlage B, Bumcrot D, Fedoruk MN, et al. RNAi-mediated gene silencing in non-human primates. Nature. 2006;441:111–4.

    Article  PubMed  CAS  Google Scholar 

  55. Judge AD, Robbins M, Tavakoli I, Levi J, Hu L, Fronda A, et al. Confirming the RNAi-mediated mechanism of action of siRNA-based cancer therapeutics in mice. J Clin Invest. 2009;119:661–73.

    Article  PubMed  CAS  Google Scholar 

  56. Akinc A, Zumbuehl A, Goldberg M, Leshchiner ES, Busini V, Hossain N, et al. A combinatorial library of lipid-like materials for delivery of RNAi therapeutics. Nat Biotechnol. 2008;26:561–9.

    Article  PubMed  CAS  Google Scholar 

  57. Gao X, Huang L. Potentiation of cationic liposome-mediated gene delivery by polycations. Biochemistry. 1996;35:1027–36.

    Article  PubMed  CAS  Google Scholar 

  58. Gao K, Huang L. Nonviral methods for siRNA delivery. Mol Pharm. 2009;6(3):651–659.

    Article  PubMed  CAS  Google Scholar 

  59. Li SD, Huang L. Targeted delivery of antisense oligodeoxynucleotide and small interference RNA into lung cancer cells. Mol Pharm. 2006;3:579–88.

    Article  PubMed  CAS  Google Scholar 

  60. Li SD, Chen YC, Hackett MJ, Huang L. Tumor-targeted delivery of siRNA by self-assembled nanoparticles. Mol Ther. 2008;16:163–9.

    Article  PubMed  CAS  Google Scholar 

  61. MacLachlan I, Jeffs L. Compositions for the delivery of therapeutic agents and uses thereof. Norwalk: Protiva Biotherapeutics; 2006.

    Google Scholar 

  62. Li SD, Chono S, Huang L. Efficient oncogene silencing and metastasis inhibition via systemic delivery of siRNA. Mol Ther. 2008;16:942–6.

    Article  PubMed  CAS  Google Scholar 

  63. Chono S, Li SD, Conwell CC, Huang L. An efficient and low immunostimulatory nanoparticle formulation for systemic siRNA delivery to the tumor. J Control Release. 2008;131(1):64–69.

    Article  PubMed  CAS  Google Scholar 

  64. Bouxsein NF, McAllister CS, Ewert KK, Samuel CE, Safinya CR. Structure and gene silencing activities of monovalent and pentavalent cationic lipid vectors complexed with siRNA. Biochemistry. 2007;46:4785–92.

    Article  PubMed  CAS  Google Scholar 

  65. Ma Z, Li J, He F, Wilson A, Pitt B, Li S. Cationic lipids enhance siRNA-mediated interferon response in mice. Biochem Biophys Res Commun. 2005;330:755–9.

    Article  PubMed  CAS  Google Scholar 

  66. Judge AD, Sood V, Shaw JR, Fang D, McClintock K, MacLachlan I. Sequence-dependent stimulation of the mammalian innate immune response by synthetic siRNA. Nat Biotechnol. 2005;23:457–62.

    Article  PubMed  CAS  Google Scholar 

  67. Hornung V, Guenthner-Biller M, Bourquin C, Ablasser A, Schlee M, Uematsu S, et al. Sequence-specific potent induction of IFN-alpha by short interfering RNA in plasmacytoid dendritic cells through TLR7. Nat Med. 2005;11:263–70.

    Article  PubMed  CAS  Google Scholar 

  68. Kim JY, Choung S, Lee EJ, Kim YJ, Choi YC. Immune activation by siRNA/liposome complexes in mice is sequence- independent: lack of a role for Toll-like receptor 3 signaling. Mol Cells. 2007;24:247–54.

    PubMed  CAS  Google Scholar 

  69. Eberle F, Giessler K, Deck C, Heeg K, Peter M, Richert C, et al. Modifications in small interfering RNA that separate immunostimulation from RNA interference. J Immunol. 2008;180:3229–37.

    PubMed  CAS  Google Scholar 

  70. Hu-Lieskovan S, Heidel JD, Bartlett DW, Davis ME, Triche TJ. Sequence-specific knockdown of EWS-FLI1 by targeted, nonviral delivery of small interfering RNA inhibits tumor growth in a murine model of metastatic Ewing’s sarcoma. Cancer Res. 2005;65:8984–92.

    Article  PubMed  CAS  Google Scholar 

  71. Heidel JD, Yu Z, Liu JY, Rele SM, Liang Y, Zeidan RK, et al. Administration in non-human primates of escalating intravenous doses of targeted nanoparticles containing ribonucleotide reductase subunit M2 siRNA. Proc Natl Acad Sci U S A. 2007;104:5715–21.

    Article  PubMed  CAS  Google Scholar 

  72. Sioud M. Induction of inflammatory cytokines and interferon responses by double-stranded and single-stranded siRNAs is sequence-dependent and requires endosomal localization. J Mol Biol. 2005;348:1079–90.

    Article  PubMed  CAS  Google Scholar 

  73. Cho YW, Kim J-D, Park K. Polycation gene delivery systems: escape from endosomes to cytosol. J Pharm Pharmacol. 2003;55:721–34.

    Article  PubMed  CAS  Google Scholar 

  74. Poeck H, Besch R, Maihoefer C, Renn M, Tormo D, Morskaya SS, et al. 5′-Triphosphate-siRNA: turning gene silencing and Rig-I activation against melanoma. Nat Med. 2008;14:1256–63.

    Article  PubMed  CAS  Google Scholar 

  75. Sato A, Takagi M, Shimamoto A, Kawakami S, Hashida M. Small interfering RNA delivery to the liver by intravenous administration of galactosylated cationic liposomes in mice. Biomaterials. 2007;28:1434–42.

    Article  PubMed  CAS  Google Scholar 

  76. Peer D, Park EJ, Morishita Y, Carman CV, Shimaoka M. Systemic leukocyte-directed siRNA delivery revealing cyclin D1 as an anti-inflammatory target. Science. 2008;319:627–30.

    Article  PubMed  CAS  Google Scholar 

  77. Schiffelers RM, Ansari A, Xu J, Zhou Q, Tang QQ, Storm G, et al. Cancer siRNA therapy by tumor selective delivery with ligand-targeted sterically stabilized nanoparticle. Nucleic Acids Res. 2004;32:e149.

    Article  PubMed  Google Scholar 

  78. Bartlett DW, Su H, Hildebrandt IJ, Weber WA, Davis ME. Impact of tumor-specific targeting on the biodistribution and efficacy of siRNA nanoparticles measured by multimodality in vivo imaging. Proc Natl Acad Sci U S A. 2007;104:15549–54.

    Article  PubMed  CAS  Google Scholar 

  79. Park JW, Hong K, Kirpotin DB, Colbern G, Shalaby R, Baselga J, et al. Anti-HER2 immunoliposomes: enhanced efficacy attributable to targeted delivery. Clin Cancer Res. 2002;8:1172–81.

    PubMed  CAS  Google Scholar 

  80. Kirpotin DB, Drummond DC, Shao Y, Shalaby MR, Hong K, Nielsen UB, et al. Antibody targeting of long-circulating lipidic nanoparticles does not increase tumor localization but does increase internalization in animal models. Cancer Res. 2006;66:6732–40.

    Article  PubMed  CAS  Google Scholar 

  81. Maeda N, Miyazawa S, Shimizu K, Asai T, Yonezawa S, Kitazawa S, et al. Enhancement of anticancer activity in antineovascular therapy is based on the intratumoral distribution of the active targeting carrier for anticancer drugs. Biol Pharm Bull. 2006;29:1936–40.

    Article  PubMed  CAS  Google Scholar 

  82. Pun SH, Tack F, Bellocq NC, Cheng J, Grubbs BH, Jensen GS, et al. Targeted delivery of RNA-cleaving DNA enzyme (DNAzyme) to tumor tissue by transferrin-modified, cyclodextrin-based particles. Cancer Biol Ther. 2004;3:641–50.

    Article  PubMed  CAS  Google Scholar 

  83. Ikedaand Y, Taira K. Ligand-targeted delivery of therapeutic siRNA. Pharm Res. 2006;23:1631–40.

    Article  CAS  Google Scholar 

  84. Davis ME. The first targeted delivery of siRNA in humans via a self-assembling, cyclodextrin polymer-based nanoparticle: from concept to clinic. Mol Pharm. 2009;6(3):659–668.

    Article  PubMed  CAS  Google Scholar 

  85. Jain RK. Physiological barriers to delivery of monoclonal antibodies and other macromolecules in tumors. Cancer Res. 1990;50:814s–9.

    PubMed  CAS  Google Scholar 

  86. Balmain A, Gray J, Ponder B. The genetics and genomics of cancer. Nat Genet. 2003;33(Suppl):238–44.

    Article  PubMed  CAS  Google Scholar 

  87. Song EW, Zhu PC, Lee SK, Chowdhury D, Kussman S, Dykxhoorn DM, et al. Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors. Nat Biotechnol. 2005;23:709–17.

    Article  PubMed  CAS  Google Scholar 

  88. Peer D, Zhu P, Carman CV, Lieberman J, Shimaoka M. Selective gene silencing in activated leukocytes by targeting siRNAs to the integrin lymphocyte function-associated antigen-1. Proc Natl Acad Sci U S A. 2007;104:4095–100.

    Article  PubMed  CAS  Google Scholar 

  89. Peng PH, Huang HS, Lee YJ, Chen YS, Ma MC. Novel role for the delta-opioid receptor in hypoxic preconditioning in rat retinas. J Neurochem. 2009;108:741–54.

    Article  PubMed  CAS  Google Scholar 

  90. Herard AS, Besret L, Dubois A, Dauguet J, Delzescaux T, Hantraye P, et al. siRNA targeted against amyloid precursor protein impairs synaptic activity in vivo Neurobiol Aging. 2006;27:1740–50.

    Article  PubMed  CAS  Google Scholar 

  91. Murata M, Takanami T, Shimizu S, Kubota Y, Horiuchi S, Habano W, et al. Inhibition of ocular angiogenesis by diced small interfering RNAs (siRNAs) specific to vascular endothelial growth factor (VEGF). Curr Eye Res. 2006;31:171–80.

    Article  PubMed  CAS  Google Scholar 

  92. Nakamura H, Siddiqui SS, Shen X, Malik AB, Pulido JS, Kumar NM, et al. RNA interference targeting transforming growth factor-beta type II receptor suppresses ocular inflammation and fibrosis. Mol Vis. 2004;10:703–11.

    PubMed  CAS  Google Scholar 

  93. Moore CC, Martin EN, Lee G, Taylor C, Dondero R, Reznikov LL, et al. Eukaryotic translation initiation factor 5A small interference RNA-liposome complexes reduce inflammation and increase survival in murine models of severe sepsis and acute lung injury. J Infect Dis. 2008;198:1407–14.

    Article  PubMed  CAS  Google Scholar 

  94. Fulton A, Peters ST, Perkins GA, Jarosinski KW, Damiani A, Brosnahan M, et al. Effective treatment of respiratory alphaherpesvirus infection using RNA interference. PLoS ONE. 2009;4:e4118.

    Article  PubMed  CAS  Google Scholar 

  95. Tompkins SM, Lo CY, Tumpey TM, Epstein SL. Protection against lethal influenza virus challenge by RNA interference in vivo Proc Natl Acad Sci U S A. 2004;101:8682–6.

    Article  PubMed  CAS  Google Scholar 

  96. Moschos SA, Jones SW, Perry MM, Williams AE, Erjefalt JS, Turner JJ, et al. Lung delivery studies using siRNA conjugated to TAT(48–60) and penetratin reveal peptide induced reduction in gene expression and induction of innate immunity. Bioconjug Chem. 2007;18:1450–9.

    Article  PubMed  CAS  Google Scholar 

  97. Satriotomo I, Bowen KK, Vemuganti R. JAK2 and STAT3 activation contributes to neuronal damage following transient focal cerebral ischemia. J Neurochem. 2006;98:1353–68.

    Article  PubMed  CAS  Google Scholar 

  98. DiFiglia M, Sena-Esteves M, Chase K, Sapp E, Pfister E, Sass M, et al. Therapeutic silencing of mutant huntingtin with siRNA attenuates striatal and cortical neuropathology and behavioral deficits. Proc Natl Acad Sci U S A. 2007;104:17204–9.

    Article  PubMed  CAS  Google Scholar 

  99. Baker-Herman TL, Fuller DD, Bavis RW, Zabka AG, Golder FJ, Doperalski NJ, et al. BDNF is necessary and sufficient for spinal respiratory plasticity following intermittent hypoxia. Nat Neurosci. 2004;7:48–55.

    Article  PubMed  CAS  Google Scholar 

  100. Tumati S, Milnes TL, Yamamura HI, Vanderah TW, Roeske WR, Varga EV. Intrathecal Raf-1-selective siRNA attenuates sustained morphine-mediated thermal hyperalgesia. Eur J Pharmacol. 2008;601:207–8.

    Article  PubMed  CAS  Google Scholar 

  101. Dore-Savard L, Roussy G, Dansereau MA, Collingwood MA, Lennox KA, Rose SD, et al. Central delivery of Dicer-substrate siRNA: a direct application for pain research. Mol Ther. 2008;16:1331–9.

    Article  PubMed  CAS  Google Scholar 

  102. Thanik VD, Greives MR, Lerman OZ, Seiser N, Dec W, Chang CC, et al. Topical matrix-based siRNA silences local gene expression in a murine wound model. Gene Ther. 2007;14:1305–8.

    Article  PubMed  CAS  Google Scholar 

  103. Tran MA, Gowda R, Sharma A, Park EJ, Adair J, Kester M, et al. Targeting V600EB-Raf and Akt3 using nanoliposomal-small interfering RNA inhibits cutaneous melanocytic lesion development. Cancer Res. 2008;68:7638–49.

    Article  PubMed  CAS  Google Scholar 

  104. Palliser D, Chowdhury D, Wang Q-Y, Lee SJ, Bronson RT, Knipe DM, et al. An siRNA-based microbicide protects mice from lethal herpes simplex virus 2 infection. Nature. 2006;439:89–94.

    Article  PubMed  CAS  Google Scholar 

  105. Yokota T, Iijima S, Kubodera T, Ishii K, Katakai Y, Ageyama N, et al. Efficient regulation of viral replication by siRNA in a non-human primate surrogate model for hepatitis C. Biochem Biophys Res Commun. 2007;361:294–300.

    Article  PubMed  CAS  Google Scholar 

  106. Yano J, Hirabayashi K, Nakagawa S, Yamaguchi T, Nogawa M, Kashimori I, et al. Antitumor activity of small interfering RNA/cationic liposome complex in mouse models of cancer. Clin Cancer Res. 2004;10:7721–6.

    Article  PubMed  CAS  Google Scholar 

  107. Carmona S, Jorgensen MR, Kolli S, Crowther C, Salazar FH, Marion PL, et al. Controlling HBV replication in vivo by intravenous administration of triggered PEGylated siRNA-nanoparticles. Mol Pharm. 2009;6(3):706–17.

    Article  PubMed  CAS  Google Scholar 

  108. Pirollo KF, Rait A, Zhou Q, Hwang SH, Dagata JA, Zon G, et al. Materializing the potential of small interfering RNA via a tumor-targeting nanodelivery system. Cancer Res. 2007;67:2938–43.

    Article  PubMed  CAS  Google Scholar 

  109. Cardoso AL, Simoes S, de Almeida LP, Plesnila N, de Lima MCP, Wagner E, et al. Tf-lipoplexes for neuronal siRNA delivery: a promising system to mediate gene silencing in the CNS. J Control Release. 2008;132:113–23.

    Article  PubMed  CAS  Google Scholar 

  110. Wang XL, Xu R, Wu X, Gillespie D, Jensen R, Lu ZR. Targeted systemic delivery of a therapeutic siRNA with a multifunctional carrier controls tumor proliferation in mice. Mol Pharm. 2009;6(3):738–746.

    Article  PubMed  CAS  Google Scholar 

  111. Kim SI, Shin D, Lee H, Ahn BY, Yoon Y, Kim M. Targeted delivery of siRNA against hepatitis C virus by apolipoprotein A-I-bound cationic liposomes. J Hepatol. 2009;50:479–88.

    Article  PubMed  CAS  Google Scholar 

  112. Wen WH, Liu JY, Qin WJ, Zhao J, Wang T, Jia LT, et al. Targeted inhibition of HBV gene expression by single-chain antibody mediated small interfering RNA delivery. Hepatology. 2007;46:84–94.

    Article  PubMed  CAS  Google Scholar 

  113. Liand SD, Huang L. Surface-modified LPD nanoparticles for tumor targeting. Ann N Y Acad Sci. 2006;1082:1–8.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nigel A. J. McMillan.

Additional information

Guest Editor: Song Li

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, S.Y., McMillan, N.A.J. Lipidic Systems for In Vivo siRNA Delivery. AAPS J 11, 639–652 (2009). https://doi.org/10.1208/s12248-009-9140-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-009-9140-1

Key words

Navigation