Skip to main content
Log in

Molecular recognition of opioid receptor ligands

  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

The cloning of the opioid receptors and subsequent use of recombinant DNA technology have led to many new insights into ligand binding. Instead of focusing on the structural features that lead to increased affinity and selectivity, researchers are now able to focus on why these features are important. Site-directed mutagenesis and chimeric data have often been at the forefront in answering these questions. Herein, we survey pharmacophores of several opioid ligands in an effort to understand the structural requirements for ligand binding and selectivity. Models are presented and compared to illustrate key sites of recognition for both opiate and nonopiate ligands. The results indicate that different ligand classes may recognize different sites within the receptor, suggesting that multiple epitopes may exist for ligand binding and selectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Haeyoung K, Raynor K, Reisine T. Amino acids in the cloned mouse kappa receptor that are necessary for high affinity agonist binding but not antagonist binding.Regul Pept. 1994;54:155–156.

    Article  Google Scholar 

  2. Meng F, Hoversten MT, Thompson RC, Taylor L, Watson SJ, Akil H. A chimeric study of the molecular basis of affinity and selectivity of the κ and the δ opioid receptors: potential role of extracellular domains.J Biol Chem. 1995;270:12730–12736.

    Article  CAS  PubMed  Google Scholar 

  3. Xue JC, Chen C, Zhu J, et al. The third extracellular loop of the μ opioid receptor is important for agonist selectivity.J Biol Chem. 1995;270:12977–12979.

    Article  CAS  PubMed  Google Scholar 

  4. Meng F, Ueda Y, Hoversten MT, et al. Mapping the receptor domains critical for the binding selectivity of delta-opioid receptor ligands.Eur J Pharmacol. 1996;311:285–292.

    Article  CAS  PubMed  Google Scholar 

  5. Wang JB, Johnson PS, Wu JM, Wang WF, Uhl GR. Human κ opiate receptor second extracellular loop elevates dynorphin's affinity for human μ/κ chimeras.J Biol Chem. 1994;269:25966–25969.

    CAS  PubMed  Google Scholar 

  6. Teschemacher H, Opheim KE, Cox BM, Goldstein A. Peptidelike substance from pituitary that acts like morphine, I: isolation.Life Sci. 1975;16:1771–1775.

    Article  CAS  PubMed  Google Scholar 

  7. Strader CD, Sigal IS, Dixon RA. Structural basis of β-adrenergic receptor function.FASEB J. 1989;3:1825–1832.

    CAS  PubMed  Google Scholar 

  8. Hibert MF, Trumpp-Kallmeyer S, Bruinvels A, Hoflack J. Three-dimensional models of neurotransmitter G-binding protein-coupled receptors.Mol Pharmacol. 1991;40:8–15.

    CAS  PubMed  Google Scholar 

  9. Trumpp-Kallmeyer S, Hoflack J, Bruinvels A, Hibert M. Modeling of G-protein-coupled receptors: application to dopamine, adrenaline, serotonin, acetylcholine, and mammalian opsin receptors.J Med Chem. 1992;35:3448–3462.

    Article  CAS  PubMed  Google Scholar 

  10. Baldwin JM. The probable arrangement of the helices in G protein-coupled receptors.EMBO J. 1993;12:1693–1703.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Strader CD, Sigal IS, Candelore MR, Rands E, Hill WS, Dixon RAF. Conserved aspartic acid residues 79 and 113 of the β-adrenergic receptor have different roles in receptor function.J Biol Chem. 1988;263:10267–10271.

    CAS  PubMed  Google Scholar 

  12. Strader CD, Candelore MR, Hill WS, Sigal IS, Dixon RA. Identification of two serine residues involved in agonist activation of the β-adrenergic receptor.J Biol Chem. 1989;264:13572–13578.

    CAS  PubMed  Google Scholar 

  13. Lenz GR, Evans SM, Walters DE, Hopfinger AJ.Opiates. Orlando, FL: Academic Press; 1986.

    Google Scholar 

  14. Surratt CK, Johnson PS, Moriwaki A, et al. Mu opiate receptor. Charged transmembrane domain amino acids are critical for agonist recognition and intrinsic activity.J Biol Chem. 1994;269: 20548–20553.

    CAS  PubMed  Google Scholar 

  15. Spivak CE, Beglan CL, Seidleck BK, et al. Naloxone activation of μ-opioid receptors mutated at a histidine residue lining the opioid binding cavity.Mol Pharmacol. 1997;52:983–992.

    CAS  PubMed  Google Scholar 

  16. Schwyzer R, Eberle A. On the molecular mechanism of α-MSH receptor interactions.Front Horm Res. 1977;4:18–25.

    Article  CAS  PubMed  Google Scholar 

  17. Portoghese PS, Sultana M, Takemori AE. Design of peptidomimetic δ opioid receptor antagonists using the message-address concept.J Med Chem. 1990;33:1714–1720.

    Article  CAS  PubMed  Google Scholar 

  18. Resnick RB, Volavka J, Freedman AM, Thomas M. Studies of EN-1639A (naltrexone): a new narcotic antagonist.Am J Psychiatry. 1974;131:646–650.

    CAS  PubMed  Google Scholar 

  19. Portoghese PS, Sultana M, Takemori AE. Naltrindole: a highly selective and potent non-peptide delta opioid receptor antagonist.Eur J Pharmacol. 1988;146:185–186.

    Article  CAS  PubMed  Google Scholar 

  20. Jones RM, Hjorth SA, Schwartz TW, Portoghese PS. Mutational evidence for a common κ antagonist binding pocket in the wild-type κ and mutant μ[K303E] opioid receptors.J Med Chem. 1998;41:4911–4914.

    Article  CAS  PubMed  Google Scholar 

  21. Magnan J, Paterson SJ, Tavani A, Kosterlitz HW. The binding spectrum of narcotic analgesic drugs with different agonist and antagonist properties.Naunyn Schmiedebergs Arch Pharmacol. 1982;319:197–205.

    Article  CAS  PubMed  Google Scholar 

  22. Szmuszkovicz J, Von Voightlander PF. Benzeneacetamide amines: structurally novel non-μ-opioids.J Med Chem. 1982;25: 1125–1126.

    Article  CAS  PubMed  Google Scholar 

  23. Lahti RA, Mickelson MM, McCall JM, Von Voigtlander PF. [3H]U-69593 a highly selective ligand for the opioid kappa receptor.Eur J Pharmacol. 1985;109:281–284.

    Article  CAS  PubMed  Google Scholar 

  24. Subramanian G, Paterlini MG, Portoghese PS, Ferguson DM. Molecular docking reveals a novel binding site model for fentanyl at the μ-opioid receptor.J Med Chem. 2000;43:381–391.

    Article  CAS  PubMed  Google Scholar 

  25. Xu H, Lu YF, Partilla JS, et al. Opioid peptide receptor studies, 11: involvement of Tyr149, Trp318 and His319 of the rat μ-opioid receptor in binding of μ-selective ligands.Synapse. 1999;32:23–28.

    Article  CAS  PubMed  Google Scholar 

  26. Jiang HL, Huang XQ, Rong SB, et al. Theoretical studies on opioid receptors and ligands, I: molecular modeling and QSAR studies on the interaction mechanism of fentanyl analogs binding to μ-opioid receptor.Int J Quantum Chem. 2000;78:285–293.

    Article  CAS  Google Scholar 

  27. Subramanian G, Paterlini MG, Larson DL, Portoghese PS, Ferguson DM. Conformational analysis and automated receptor docking of selective arylacetamide-based κ-opioid agonists.J Med Chem. 1998;41:4777–4789.

    Article  CAS  PubMed  Google Scholar 

  28. Lavecchia A, Greco G, Novellino E, Vittorio F, Ronsisvalle G. Modeling of κ-opioid receptor/agonists interactions using pharmacophore-based and docking simulations.J Med Chem. 2000;43:2124–2134.

    Article  CAS  PubMed  Google Scholar 

  29. Cappelli A, Anzini M, Vomero S, et al. Synthesis, biological evaluation, and quantitative receptor docking simulations of 2-[(acylamino)ethyl]-1,4-benzodiazepines as novel tifluadom-like ligands with high affinity and selectivity for κ-opioid receptors.J Med Chem. 1996;39:860–872.

    Article  CAS  PubMed  Google Scholar 

  30. Pogozheva ID, Lomize AL, Mosberg HI. Opioid receptor three-dimensional structures from distance geometry calculations with hydrogen bonding constraints.Biophys J. 1998;75:612–634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Knapp RJ, Malatynska E, Collins N, et al. Molecular biology and pharmacology of cloned opioid receptors.FASEB J. 1995;9:516–525.

    CAS  PubMed  Google Scholar 

  32. Jiang Q, Takemori AE, Sultana M, et al. Differential antagonism of opioid delta antinociception by [D-Ala2,Leu5,Cys6]enkephalin and naltrindole 5′-isothiocyanate: evidence for delta receptor subtypes.J Pharmacol Exp Ther. 1991;257:1069–1075.

    CAS  PubMed  Google Scholar 

  33. Sofuoglu M, Portoghese PS, Takemori AE. 7-Benzylidenenaltrexone (BTNX): a selective Δ1 opioid receptor antagonist in the mouse spinal cord.Life Sci. 1993;52:769–775.

    Article  CAS  PubMed  Google Scholar 

  34. Zaki PA, Bilsky EJ, Vanderah TW, Lai J, Evans CJ, Porreca F. Opioid receptor types and subtypes: the δ receptor as a model.Annu Rev Pharmacol Toxicol. 1996;36:379–401.

    Article  CAS  PubMed  Google Scholar 

  35. Stenkamp RE, Filipek S, Driessen CA, Teller DC, Palczewski K. Crystal structure of rhodopsin: a template for cone visual pigments and other G protein-coupled receptors.Biochim Biophys Acta. 2002;1565:168–182.

    Article  CAS  PubMed  Google Scholar 

  36. Filipek S, Teller DC, Palczewski K, Stenkamp R. The crystallographic model of rhodopsin and its use in studies of other G protein-coupled receptors.Annu Rev Biophys Biomol Struct. 2003;32:375–397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Metzger TG, Paterlini MG, Portoghese PS, Ferguson DM. Application of the message-address concept of the docking of naltrexone and selective naltrexone-derived opioid antagonists into opioid receptor models.Neurochem Res. 1996;21:1287–1294.

    Article  CAS  PubMed  Google Scholar 

  38. Alkorta I, Loew GH. A 3D model of the δ opioid receptor and ligand-receptor complexes.Protein Eng. 1996;9:573–583.

    Article  CAS  PubMed  Google Scholar 

  39. Strahs D, Weinstein H. Comparative modeling and molecular dynamics studies of the δ, κ and μ opioid receptors.Protein Eng. 1997;10:1019–1038.

    Article  CAS  PubMed  Google Scholar 

  40. Meng EC, Shoichet BK, Kuntz ID. Automated docking with grid-based energy evaluation.J Comput Chem. 1992;13:505–524.

    Article  CAS  Google Scholar 

  41. Blumberg H, Dayton HB, Wolf PS. Counteraction of narcotic antagonist analgesics by the narcotic antagonist naloxone.Proc Soc Exp Biol Med. 1966;123:755–758.

    Article  CAS  PubMed  Google Scholar 

  42. Pasternak GW, Snyder SH. Opiate receptor binding: enzymic treatments that discriminate between agonist and antagonist interactions.Mol Pharmacol. 1975;11:478–484.

    CAS  Google Scholar 

  43. Beckett AH, Casy AF. Synthetic analgesics: stereochemical considerations.J Pharm Pharmacol. 1954;6:986–1001.

    Article  CAS  PubMed  Google Scholar 

  44. Attwood TK, Findlay JBC. Fingerprinting G-protein-coupled receptors.Protein Eng. 1994;7:195–203.

    Article  CAS  PubMed  Google Scholar 

  45. Befort K, Tabbara L, Kling D, Maigret B, Kieffer BL. Role of aromatic transmembrane residues on the δ-opioid receptor in ligand recognition.J Biol Chem. 1996;271:10161–10168.

    Article  CAS  PubMed  Google Scholar 

  46. Hjorth SA, Thirstrup K, Grandy DK, Schwartz TW. Analysis of selective binding epitopes for the κ-opioid receptor antagonist nor-binaltorphimine.Mol Pharmacol. 1995;47:1089–1094.

    CAS  PubMed  Google Scholar 

  47. Valiquette M, Vu HK, Yue SY, Wahlestedt C, Walker P. Involvement of Trp-284, Val-296, and Val-297 of the human δ-opioid receptor in binding of δ-selective ligands.J Biol Chem. 1996;271: 18789–18796.

    Article  CAS  PubMed  Google Scholar 

  48. Portoghese AS, Lipkowski AW, Takemori AE. Bimorphinans as highly selective, potent κ opioid receptor antagonists.J Med Chem. 1987;30:238–239.

    Article  CAS  PubMed  Google Scholar 

  49. Metzger TG, Paterlini MG, Ferguson DM, Portoghese PS. Investigation of the selectivity of oxymorphone- and naltrexone-derived ligands via site-directed mutagenesis of opioid receptors: exploring the ‘address’ recognition locus.J Med Chem. 2001;44:857–862.

    Article  CAS  PubMed  Google Scholar 

  50. Portoghese PS, Moe ST, Takemori AE. A selective θ1 opioid receptor agonist derived from oxymorphone. Evidence for separate recognition sites for θ1 opioid receptor agonists and antagonists.J Med Chem. 1993;36:2572–2574.

    Article  CAS  PubMed  Google Scholar 

  51. Bonner G, Meng F, Akil H. Selectivity of μ-opioid receptor determined by interfacial residues near third extracellular loop.Eur J Pharmacol. 2000;403:37–44.

    Article  CAS  PubMed  Google Scholar 

  52. Pil J, Tytgat J. The role of the hydrophilic Asn230 residue of the μ-opioid receptor in the potency of various opioid agonists.Br J Pharmacol. 2001;134:496–506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kanematsu K, Sagara T. An approach to the rational design of opioid receptor ligands: non-narcotic κ-opioid receptor ligand KT-95 free from euphoria and/or dysphoria.Curr Med Chem CNS Agents. 2001;1:1–25.

    CAS  Google Scholar 

  54. Liu-Chen LY, Li SX, Tallarida RJ. Studies on kinetics of [3H]β-funaltrexamine binding to μ opioid receptor.Mol Pharmacol. 1990;37:243–250.

    CAS  PubMed  Google Scholar 

  55. Chen C, Yin J, Riel JK, et al. Determination of the amino acid residue involved in [3H]β-funaltrexamine covalent binding in the cloned rat μ-opioid receptor.J Biol Chem. 1996;271:21422–21429.

    Article  CAS  PubMed  Google Scholar 

  56. Calderon SN, Rothman RB, Porreca F, et al. Probes for narcotic receptor mediated phenomena, 19: synthesis of (+)-4-[(αR)-α-((2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-methoxybenzyl]-N,N-diethylbenzamide (SNC 80): a highly selective, nonpeptide δ opioid receptor agonist.J Med Chem. 1994;37:2125–2128.

    Article  CAS  PubMed  Google Scholar 

  57. Liao S, Alfaro-Lopez J, Shenderovich MD, et al. De novo design, synthesis, and biological activities of high-affinity and selective non-peptide agonists of the delta-opioid receptor.J Med Chem. 1998;41:4767–4776.

    Article  CAS  PubMed  Google Scholar 

  58. Coop A, Jacobson AE. The LMC delta opioid recognition pharmacophore: comparison of SNC80 and oxymorphindole.Bioorg Med Chem Lett. 1999;9:357–362.

    Article  CAS  PubMed  Google Scholar 

  59. Bernard D, Coop A, MacKerell AD. 2D conformationally sampled pharmacophore: a ligand-based pharmacophore to differentiate delta opioid agonists from antagonists.J Am Chem Soc. 2003;125:3101–3107.

    Article  CAS  PubMed  Google Scholar 

  60. Carson JR, Carmosin FJ, Fitzpatrick LJ, Reitz AB, Jetter MC, inventors. 4-[aryl(piperidin-4-yl)]aminobenzamides. US patent 6 436 959. December 23, 1998.

  61. Wei ZY, Brown W, Takasaki B, et al. N,N-Diethyl-4-(phenylpiperidin-4-ylidenemethyl)benzamide: a novel, exceptionally selective, potent δ opioid receptor agonist with oral bioavailability and its analogues.J Med Chem. 2000;43:3895–3905.

    Article  CAS  PubMed  Google Scholar 

  62. Knapp RJ, Santoro G, De Leon IA, et al. Structure-activity relationships for SNC80 and related compounds at cloned human delta and mu opioid receptors.J Pharmacol Exp Ther. 1996;277:1284–1291.

    CAS  PubMed  Google Scholar 

  63. Calderon SN, Coop A. SNC 80 and related δ opioid agonists.Curr Pharm Des. 2004;10:733–742.

    Article  CAS  PubMed  Google Scholar 

  64. Podlogar BL, Poda GI, Demeter DA, et al. Synthesis and evaluation of 4-(N,N-diarylamino)piperidines with high selectivity to the δ-opioid receptor: a combined 3D-QSAR and ligand docking study.Drug Des Discov. 2000;17:34–50.

    CAS  PubMed  Google Scholar 

  65. Dondio G, Ronzoni S, Eggleston DS, et al. Discovery of a novel class of substituted pyrrolooctahydroisoquinolines as potent and selective δ opioid agonists, based on an extension of the message-address concept.J Med Chem. 1997;40:3192–3198.

    Article  CAS  PubMed  Google Scholar 

  66. Dondio G, Ronzoni S, Petrillo P, Desjarlais RL, Raveglia LF. Pyrrolooctahydroisoquinolines as potent and selective δ opioid receptor ligands: SAR analysis and docking studies.Bioorg Med Chem Lett. 1997;7:2967–2972.

    Article  CAS  Google Scholar 

  67. Casy AF, Parfitt RT.Opioid Analgesics: Chemistry and Receptors. New York, NY: Plenum Press, 1986.

    Book  Google Scholar 

  68. Subramanian G, Ferguson DM. Conformational landscape of selective μ-opioid agonists in gas phase and in aqueous solution: the fentanyl series.Drug Des Discov. 2000;17:55–67.

    CAS  PubMed  Google Scholar 

  69. Cometta-Morini C, Loew GH. Development of a conformational search strategy for flexible ligands: a study of the potent mu-selective opioid analgesic fentanyl.J Comput Aided Mol Des. 1991;5:335–356.

    Article  CAS  PubMed  Google Scholar 

  70. Brandt W, Barth A, Holtje HD. A new consistent model explaining structure (conformation)-activity relationships of opiates with μ-selectivity.Drug Des Discov. 1993;10:257–283.

    CAS  PubMed  Google Scholar 

  71. Tang Y, Chen KX, Jiang HL, Wang ZX, Ji RY, Chi ZQ. Molecular modeling of μ opioid receptor and its interaction with ohmefentanyl.Zhongguo Yao Li Xue Bao. 1996;17:156–160.

    CAS  PubMed  Google Scholar 

  72. Xu H, Lu YF, Partilla JS, et al. Opioid peptide receptor studies, 11: involvement of Tyr149, Trp318 and His319 of the rat μ-opioid receptor in binding of μ-selective ligands.Synapse. 1999;32:23–28.

    Article  CAS  PubMed  Google Scholar 

  73. Winter CA, Orahovats PD, Lehman EG. Analgesic activity and morphine antagonism of compounds related to nalorphine.Arch Int Pharmacodyn Ther. 1957;110:186–202.

    CAS  PubMed  Google Scholar 

  74. Hunter JC, Leighton GE, Meecham KG, et al. CI-977, a novel and selective agonist for the κ-opioid receptor.Br J Pharmacol. 1990;101:183–189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Rees DC. Chemical structures and biological activities of non-peptide selective kappa opioid ligands.Prog Med Chem. 1992;29:109–139.

    Article  CAS  PubMed  Google Scholar 

  76. Froimowitz M, DiMeglio CM, Makriyannis A. Conformational preferences of the κ-selective opioid agonist U50488. A combined molecular mechanics and nuclear magnetic resonance study.J Med Chem. 1992;35:3085–3094.

    Article  CAS  PubMed  Google Scholar 

  77. Higginbottom M, Nolan W, O'Toole J, Ratcliffe GS, Rees DC, Roberts E. The design and synthesis of κ opioid ligands based on a binding model for κ agonists.Bioorg Med Chem Lett. 1993;3:841–846.

    Article  CAS  Google Scholar 

  78. Rajagopalan P, Scribner RM, Pennev P, et al. Dup 747: sar study.Bioorg Med Chem Lett. 1992;2:721–726.

    Article  CAS  Google Scholar 

  79. Thirstrup K, Hjorth SA, Schwartz TW. Investigation of the binding pocket in the kappa opioid receptor by a combination of alanine substitutions and steric hindrance mutagenesis. Poster M30. 27th Meeting of the International Narcotics Research Conference; July 21–26, 1996; Long Beach, CA.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David M. Ferguson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kane, B.E., Svensson, B. & Ferguson, D.M. Molecular recognition of opioid receptor ligands. AAPS J 8, 15 (2006). https://doi.org/10.1208/aapsj080115

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/aapsj080115

Keywords

Navigation