Skip to main content

Advertisement

Log in

Apigenin Reactivates Nrf2 Anti-oxidative Stress Signaling in Mouse Skin Epidermal JB6 P + Cells Through Epigenetics Modifications

  • Research Article
  • Theme: Natural Products Drug Discovery in Cancer Prevention
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Nrf2 is a crucial transcription factor that controls a critical anti-oxidative stress defense system and is implicated in skin homeostasis. Apigenin (API), a potent cancer chemopreventive agent, protects against skin carcinogenesis and elicits multiple molecular signaling pathways. However, the potential epigenetic effect of API in skin cancer chemoprotection is not known. In this study, bisulfite genomic DNA sequencing and methylated DNA immunoprecipitation were utilized to investigate the demethylation effect of API at 15 CpG sites in the Nrf2 promoter in mouse skin epidermal JB6 P + cells. In addition, qPCR and Western blot analyses were performed to evaluate the mRNA and protein expression of Nrf2 and the Nrf2 ARE downstream gene, NQO1. Finally, the protein expression levels of DNA methyltransferases (DNMTs) and histone deacetylases (HDACs) were evaluated using API and the DNMT/HDAC inhibitor 5-aza/ trichostatin A. Our results showed that API effectively reversed the hypermethylated status of the 15 CpG sites in the Nrf2 promoter in a dose-dependent manner. API enhanced the nuclear translocation of Nrf2 and increased the mRNA and protein expression of Nrf2 and the Nrf2 downstream target gene, NQO1. Furthermore, API reduced the expression of the DNMT1, DNMT3a, and DNMT3b epigenetic proteins as well as the expression of some HDACs (1–8). Taken together, our results showed that API can restore the silenced status of Nrf2 in skin epidermal JB6 P + cells by CpG demethylation coupled with attenuated DNMT and HDAC activity. These results may provide new therapeutic insights into the prevention of skin cancer by dietary phytochemicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

REFERENCES

  1. Lomas A, Leonardi-Bee J, Bath-Hextall F. A systematic review of worldwide incidence of nonmelanoma skin cancer. Br J Dermatol. 2012;166(5):1069–80.

    Article  CAS  PubMed  Google Scholar 

  2. Lewis KG, Weinstock MA. Trends in nonmelanoma skin cancer mortality rates in the United States, 1969 through 2000. J Invest Dermatol. 2007;127(10):2323–7.

    Article  CAS  PubMed  Google Scholar 

  3. Siegel R, Ma J, Zou Z, Jemal A. Cancer statistics, 2014. CA: A Cancer J Clin. 2014;64(1):9–29.

    Google Scholar 

  4. Halliday GM, Byrne SN, Damian DL. Ultraviolet A radiation: its role in immunosuppression and carcinogenesis. Semin Cutan Med Surg. 2011;30(4):214–21.

    Article  CAS  PubMed  Google Scholar 

  5. Hussein MR. Ultraviolet radiation and skin cancer: molecular mechanisms. J Cutan Pathol. 2005;32(3):191–205.

    Article  PubMed  Google Scholar 

  6. Nandakumar V, Vaid M, Tollefsbol TO, Katiyar SK. Aberrant DNA hypermethylation patterns lead to transcriptional silencing of tumor suppressor genes in UVB-exposed skin and UVB-induced skin tumors of mice. Carcinogenesis. 2011;32(4):597–604.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Jones PA, Baylin SB. The fundamental role of epigenetic events in cancer. Nat Rev Genet. 2002;3(6):415–28.

    CAS  PubMed  Google Scholar 

  8. Sathyanarayana UG, Moore AY, Li L, Padar A, Majmudar K, Stastny V, et al. Sun exposure related methylation in malignant and non-malignant skin lesions. Cancer Lett. 2007;245(1–2):112–20.

    Article  CAS  PubMed  Google Scholar 

  9. Brown VL, Harwood CA, Crook T, Cronin JG, Kelsell DP, Proby CM. p16INK4a and p14ARF tumor suppressor genes are commonly inactivated in cutaneous squamous cell carcinoma 2004 [cited 122 5]. 1284-92]. Available from: <Go to ISI>://MEDLINE:15140233.

  10. van Doorn R, Zoutman WH, Dijkman R, de Menezes RX, Commandeur S, Mulder AA, et al. Epigenetic profiling of cutaneous T-cell lymphoma: promoter hypermethylation of multiple tumor suppressor genes including BCL7a, PTPRG, and p73. J Clin Oncol. 2005;23(17):3886–96.

    Article  PubMed  Google Scholar 

  11. Lee JH, Khor TO, Shu L, Su Z-Y, Fuentes F, Kong A-NT. Dietary phytochemicals and cancer prevention: Nrf2 signaling, epigenetics, and cell death mechanisms in blocking cancer initiation and progression. Pharmacol Ther. 2013;137(2):153–71.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Su ZY, Zhang C, Lee JH, Shu L, Wu TY, Khor TO, et al. Requirement and epigenetics re-programming of Nrf2 in suppression of tumor promoter TPA-induced mouse skin cell transformation by sulforaphane. Cancer prevention research. 2014.

  13. Su ZY, Shu L, Khor TO, Lee JH, Fuentes F, Kong AN. A perspective on dietary phytochemicals and cancer chemoprevention: oxidative stress, nrf2, and epigenomics. Top Curr Chem. 2013;329:133–62.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Yu S, Khor TO, Cheung K-L, Li W, Wu T-Y, Huang Y, et al. Nrf2 expression is regulated by epigenetic mechanisms in prostate cancer of TRAMP mice. PLoS One. 2010;5(1):e8579.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Hatzimichael E, Crook T. Cancer epigenetics: new therapies and new challenges. J Drug Deliv. 2013;2013:529312.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Katiyar SK, Singh T, Prasad R, Sun Q, Vaid M. Epigenetic alterations in ultraviolet radiation-induced skin carcinogenesis: interaction of bioactive dietary components on epigenetic targets. Photochem Photobiol. 2012;88(5):1066–74.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Baumann LS. Less-known botanical cosmeceuticals. Dermatol Ther. 2007;20(5):330–42.

    Article  PubMed  Google Scholar 

  18. Patel D, Shukla S, Gupta S. Apigenin and cancer chemoprevention: progress, potential and promise (review). Int J Oncol. 2007;30(1):233–45.

    CAS  PubMed  Google Scholar 

  19. Shukla S, Gupta S. Apigenin: a promising molecule for cancer prevention. Pharm Res. 2010;27(6):962–78.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Merfort I, Heilmann J, Hagedorn-Leweke U, Lippold BC. In vivo skin penetration studies of camomile flavones. Pharmazie. 1994;49(7):509–11.

    CAS  PubMed  Google Scholar 

  21. Li B, Birt DF. In vivo and in vitro percutaneous absorption of cancer preventive flavonoid apigenin in different vehicles in mouse skin. Pharm Res. 1996;13(11):1710–5.

    Article  CAS  PubMed  Google Scholar 

  22. Li B, Pinch H, Birt DF. Influence of vehicle, distant topical delivery, and biotransformation on the chemopreventive activity of apigenin, a plant flavonoid, in mouse skin. Pharm Res. 1996;13(10):1530–4.

    Article  CAS  PubMed  Google Scholar 

  23. Wei H, Tye L, Bresnick E, Birt DF. Inhibitory effect of apigenin, a plant flavonoid, on epidermal ornithine decarboxylase and skin tumor promotion in mice. Cancer Res. 1990;50(3):499–502.

    CAS  PubMed  Google Scholar 

  24. Birt DF, Mitchell D, Gold B, Pour P, Pinch HC. Inhibition of ultraviolet light induced skin carcinogenesis in SKH-1 mice by apigenin, a plant flavonoid. Anticancer Res. 1997;17(1A):85–91.

    CAS  PubMed  Google Scholar 

  25. Caltagirone S, Rossi C, Poggi A, Ranelletti FO, Natali PG, Brunetti M, et al. Flavonoids apigenin and quercetin inhibit melanoma growth and metastatic potential. Int J Cancer. 2000;87(4):595–600.

    Article  CAS  PubMed  Google Scholar 

  26. Fang M, Chen D, Yang CS. Dietary polyphenols may affect DNA methylation. J Nutr. 2007;137(1 Suppl):223S–8.

    CAS  PubMed  Google Scholar 

  27. Pandey M, Kaur P, Shukla S, Abbas A, Fu P, Gupta S. Plant flavone apigenin inhibits HDAC and remodels chromatin to induce growth arrest and apoptosis in human prostate cancer cells: in vitro and in vivo study. Mol Carcinog. 2012;51(12):952–62.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Khor TO, Huang Y, Wu T-Y, Shu L, Lee J, Kong A-NT. Pharmacodynamics of curcumin as DNA hypomethylation agent in restoring the expression of Nrf2 via promoter CpGs demethylation. Biochem Pharmacol. 2011;82(9):1073–8.

    Article  CAS  PubMed  Google Scholar 

  29. Fuentes F, Shu L, Lee JH, Su Z-Y, Lee K-R, Kong A-NT. Nrf2-target approaches in cancer chemoprevention mediated by dietary phytochemicals. In: Bode AM, Dong Z, editors. Cancer prevention: methods in pharmacology and toxicology. New York: Springer; 2014. p. 53–83.

    Chapter  Google Scholar 

  30. Ichihashi M, Ueda M, Budiyanto A, Bito T, Oka M, Fukunaga M, et al. UV-induced skin damage. Toxicology. 2003;189(1–2):21–39.

    Article  CAS  PubMed  Google Scholar 

  31. Schafer M, Dutsch S, auf dem Keller U, Werner S. Nrf2: a central regulator of UV protection in the epidermis. Cell Cycle. 2010;9(15):2917–8.

    Article  CAS  PubMed  Google Scholar 

  32. Xu C, Huang M-T, Shen G, Yuan X, Lin W, Khor TO, et al. Inhibition of 7,12-dimethylbenz(a)anthracene-induced skin tumorigenesis in C57BL/6 mice by sulforaphane is mediated by nuclear factor E2-related factor 2. Cancer Res. 2006;66(16):8293–6.

    Article  CAS  PubMed  Google Scholar 

  33. auf dem Keller U, Huber M, Beyer TA, Kumin A, Siemes C, Braun S, et al. Nrf transcription factors in keratinocytes are essential for skin tumor prevention but not for wound healing. Mol Cell Biol. 2006;26(10):3773–84.

    Article  Google Scholar 

  34. Schafer M, Dutsch S, auf dem Keller U, Navid F, Schwarz A, Johnson DA. Nrf2 establishes a glutathione-mediated gradient of UVB cytoprotection in the epidermis. Genes Dev. 2010;24(10):1045–58.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Lepley DM, Pelling JC. Induction of p21/WAF1 and G1 cell-cycle arrest by the chemopreventive agent apigenin. Mol Carcinog. 1997;19(2):74–82.

    Article  CAS  PubMed  Google Scholar 

  36. McVean M, Weinberg WC, Pelling JC. A p21(waf1)-independent pathway for inhibitory phosphorylation of cyclin-dependent kinase p34(cdc2) and concomitant G(2)/M arrest by the chemopreventive flavonoid apigenin. Mol Carcinog. 2002;33(1):36–43.

    Article  CAS  PubMed  Google Scholar 

  37. Tong X, Pelling JC. Enhancement of p53 expression in keratinocytes by the bioflavonoid apigenin is associated with RNA-binding protein HuR. Mol Carcinog. 2009;48(2):118–29.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Huang YT, Kuo ML, Liu JY, Huang SY, Lin JK. Inhibitions of protein kinase C and proto-oncogene expressions in NIH 3 T3 cells by apigenin. Eur J Cancer. 1996;32A(1):146–51.

    Article  CAS  PubMed  Google Scholar 

  39. Tong X, Van Dross RT, Abu-Yousif A, Morrison AR, Pelling JC. Apigenin prevents UVB-induced cyclooxygenase 2 expression: coupled mRNA stabilization and translational inhibition. Mol Cell Biol. 2007;27(1):283–96.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Van Dross RT, Hong X, Pelling JC. Inhibition of TPA-induced cyclooxygenase-2 (COX-2) expression by apigenin through downregulation of Akt signal transduction in human keratinocytes. Mol Carcinog. 2005;44(2):83–91.

    Article  PubMed  Google Scholar 

  41. Byun S, Park J, Lee E, Lim S, Yu JG, Lee SJ, et al. Src kinase is a direct target of apigenin against UVB-induced skin inflammation. Carcinogenesis. 2013;34(2):397–405.

    Article  CAS  PubMed  Google Scholar 

  42. Arango D, Morohashi K, Yilmaz A, Kuramochi K, Parihar A, Brahimaj B, et al. Molecular basis for the action of a dietary flavonoid revealed by the comprehensive identification of apigenin human targets. Proc Natl Acad Sci U S A. 2013;110(24):E2153–62.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Lee WJ, Shim J-Y, Zhu BT. Mechanisms for the inhibition of DNA methyltransferases by tea catechins and bioflavonoids. Mol Pharmacol. 2005;68(4):1018–30.

    Article  CAS  PubMed  Google Scholar 

  44. Rajnee Kanwal HS, and Sanjay Gupta. Abstract 3683: Plant flavonoid apigenin preferentially binds with GC-rich DNA sequences and inhibits DNA methylation. AACR Proceedings of the 102nd Annual Meeting of the American Association for Cancer Research; Orlando, FL: Cancer Research April 15, 2011; Volume 71, Issue 8, Supplement 1; 2011.

  45. Nguyen T, Kuo C, Nicholl MB, Sim MS, Turner RR, Morton DL, et al. Downregulation of microRNA-29c is associated with hypermethylation of tumor-related genes and disease outcome in cutaneous melanoma. Epigenetics: Off J DNA Methylation Soc. 2011;6(3):388–94.

    Article  CAS  Google Scholar 

  46. Hadnagy A, Beaulieu R, Balicki D. Histone tail modifications and noncanonical functions of histones: perspectives in cancer epigenetics. Mol Cancer Ther. 2008;7(4):740–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank all the members in Dr. Ah-Ng Tony Kong’s lab for their helpful discussion and preparation of this manuscript. This work was supported by institutional funds.

Conflict of interest

No potential conflicts of interest were disclosed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ah-Ng Tony Kong.

Additional information

Guest Editors: Ah-Ng Tony Kong and Chi Chen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paredes-Gonzalez, X., Fuentes, F., Su, ZY. et al. Apigenin Reactivates Nrf2 Anti-oxidative Stress Signaling in Mouse Skin Epidermal JB6 P + Cells Through Epigenetics Modifications. AAPS J 16, 727–735 (2014). https://doi.org/10.1208/s12248-014-9613-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-014-9613-8

KEY WORDS

Navigation