Skip to main content

Advertisement

Log in

Antitumor Activity of Gemcitabine Can Be Potentiated in Pancreatic Cancer through Modulation of TLR4/NF-κB signaling by 6-Shogaol

  • Research Article
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Advanced pancreatic cancer still has a poor prognosis, even with the approval of several drugs, such as gemcitabine. Therefore, developing effective and safe antitumor agents is urgently needed. 6-Shogaol, a phenol extracted from ginger, has been linked to suppression of proliferation and survival of cancer with different mechanisms. In the present study, we investigated whether 6-shogaol could suppress pancreatic cancer progress and potentiate pancreatic cancer to gemcitabine treatment in vitro and in vivo. We found that 6-shogaol prevented the activation of toll like receptor 4 (TLR4)/NF-κB signaling. The modulation of NF-κB signaling by 6-shogaol was ascertained by electrophoretic mobility shift assay and western blot analysis. The suppression of NF-κB signaling and key cell survival regulators including COX-2, cyclinD1, survivin, cIAP-1, XIAP, Bcl-2, and MMP-9 brought the anti-proliferation effects in pancreatic cancer cells and sensitized them to gemcitabine treatment. Furthermore, in a pancreatic cancer xenograft model, we found a decreased proliferation index (Ki-67) and increased apoptosis by TUNEL staining in 6-shogaol treated tumors. It was also shown that 6-shogaol combined with gemcitabine treatment was more effective than drug alone, consistent with the downregulation of NF-κB activity along with its target genes COX-2, cyclinD1, survivin, cIAP-1, and XIAP. Overall, our results suggest that 6-shogaol can inhibit the growth of human pancreatic tumors and sensitize them to gemcitabine by suppressing of TLR4/NF-κB-mediated inflammatory pathways linked to tumorigenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Coussens LM, Werb Z. Inflammation and cancer. Nature. 2002;420(6917):860–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Yoshimoto S, Loo TM, Atarashi K, Kanda H, Sato S, Oyadomari S, et al. Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature. 2013;499(7456):97–101.

    Article  CAS  PubMed  Google Scholar 

  3. Ikebe M, Kitaura Y, Nakamura M, Tanaka H, Yamasaki A, Nagai S, et al. Lipopolysaccharide (LPS) increases the invasive ability of pancreatic cancer cells through the TLR4/MyD88 signaling pathway. J Surg Oncol. 2009;100(8):725–31.

    Article  CAS  PubMed  Google Scholar 

  4. Zhang J-J, Wu H-S, Wang L, Tian Y, Zhang J-H, Wu H-L. Expression and significance of TLR4 and HIF-1 alpha in pancreatic ductal adenocarcinoma. World J Gastroenterol. 2010;16(23):2881–8.

    Article  CAS  PubMed  Google Scholar 

  5. Arlt A, Gehrz A, Muerkoster S, Vorndamm J, Kruse ML, Folsch UR, et al. Role of NF-kappa B and Akt/PI3K in the resistance of pancreatic carcinoma cell lines against gemcitabine-induced cell death. Oncogene Oncogene. 2003;22(21):3243–51.

    Article  CAS  Google Scholar 

  6. Hung J-Y, Hsu Y-L, Li C-T, Ko Y-C, Ni W-C, Huang M-S, et al. 6-Shogaol, an active constituent of dietary ginger, induces autophagy by inhibiting the AKT/mTOR pathway in human non-small cell lung cancer A549 cells. J Agric Food Chem. 2009;57(20):9809–16.

    Article  CAS  PubMed  Google Scholar 

  7. Ishiguro K, Ando T, Maeda O, Ohmiya N, Niwa Y, Kadomatsu K, et al. Ginger ingredients reduce viability of gastric cancer cells via distinct mechanisms. Biochem Biophys Res Commun. 2007;362(1):218–23.

    Article  CAS  PubMed  Google Scholar 

  8. Tan BS, Kang O, Mai CW, Tiong KH, Khoo AS-B, Pichika MR, et al. 6-Shogaol inhibits breast and colon cancer cell proliferation through activation of peroxisomal proliferator activated receptor gamma (PPARgamma). Cancer Lett. 2013;336(1):127–39.

    Article  CAS  PubMed  Google Scholar 

  9. Hu R, Zhou P, Peng Y-B, Xu X, Ma J, Liu Q, et al. 6-Shogaol induces apoptosis in human hepatocellular carcinoma cells and exhibits anti-tumor activity in vivo through endoplasmic reticulum stress. PLoS One. 2012;7(6):e39664.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Liu Q, Peng Y-B, Qi L-W, Cheng X-L, Xu X-J, Liu L-L, et al. The cytotoxicity mechanism of 6-shogaol-treated HeLa human cervical cancer cells revealed by label-free shotgun proteomics and bioinformatics analysis. Evid Based Complement Alternat Med. 2012;2012:278652.

    PubMed Central  PubMed  Google Scholar 

  11. Ling H, Yang H, Tan SH, Chui WK, Chew EH. 6-Shogaol, an active constituent of ginger, inhibits breast cancer cell invasion by reducing matrix metalloproteinase-9 expression via blockade of nuclear factor-kappa B activation. Br J Pharmacol. 2010;161(8):1763–77.

    Article  CAS  PubMed  Google Scholar 

  12. Park S-J, Lee M-Y, Son B-S, Youn H-S. TBK1-targeted suppression of TRIF-dependent signaling pathway of toll-like receptors by 6-shogaol, an active component of ginger. Biosci, Biotechnol, Biochem. 2009;73(7):1474–8.

    Article  CAS  Google Scholar 

  13. Chou T-C. Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol Rev. 2006;58(3):621–81.

    Article  CAS  PubMed  Google Scholar 

  14. Harikumar KB, Kunnumakkara AB, Sethi G, Diagaradjane P, Anand P, Pandey MK, et al. Resveratrol, a multitargeted agent, can enhance antitumor activity of gemcitabine in vitro and in orthotopic mouse model of human pancreatic cancer. Int J Cancer. 2010;127(2):257–68.

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Liptay S, Weber CK, Ludwig L, Wagner M, Adler G, Schmid RM. Mitogenic and antiapoptotic role of constitutive NF-kappa B/Rel activity in pancreatic cancer. Int J Cancer. 2003;105(6):735–46.

    Article  CAS  PubMed  Google Scholar 

  16. Wang J, Cai Y, Shao L-J, Siddiqui J, Palanisamy N, Li R, et al. Activation of NF-kappa B by TMPRSS2/ERG fusion isoforms through toll-like receptor-4. Cancer Res. 2011;71(4):1325–33.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Kawai T, Akira S. Signaling to NF-kappa B by toll-like receptors. Trends Mol Med. 2007;13(11):460–9.

    Article  CAS  PubMed  Google Scholar 

  18. Akira S, Takeda K. Toll-like receptor signalling. Nat Rev Immunol. 2004;4(7):499–511.

    Article  CAS  PubMed  Google Scholar 

  19. Banerjee S, Zhang Y, Wang Z, Che M, Chiao PJ, Abbruzzese JL, et al. In vitro and in vivo molecular evidence of genistein action in augmenting the efficacy of cisplatin in pancreatic cancer. Int J Cancer. 2007;120(4):906–17.

    Article  CAS  PubMed  Google Scholar 

  20. El-Rayes BF, Shields AF, Vaitkevicius V, Philip PA. Developments in the systemic therapy of pancreatic cancer. Cancer Invest. 2003;21(1):73–86.

    Article  CAS  PubMed  Google Scholar 

  21. Ishiguro K, Ando T, Watanabe O, Goto H. Specific reaction of alpha, beta-unsaturated carbonyl compounds such as 6-shogaol with sulfhydryl groups in tubulin leading to microtubule damage. FEBS Lett. 2008;582(23–24):3531–6.

    Article  CAS  PubMed  Google Scholar 

  22. Youn HS, Saitoh SI, Miyake K, Hwang DH. Inhibition of homodimerization of Toll-like receptor 4 by curcumin. Biochem Pharmacol. 2006;72:62–9.

    Article  CAS  PubMed  Google Scholar 

  23. Youn HS, Lee JK, Choi YJ, Saitoh SI, Miyake K, Hwang DH, et al. Cinnamaldehyde suppresses toll-like receptor 4 activation mediated through the inhibition of receptor oligomerization. Biochem Pharmacol. 2008;75(2):494–502.

    Article  CAS  PubMed  Google Scholar 

  24. Youn H-S, Lim HJ, Lee HJ, Hwang D, Yang M, Jeon R, et al. Garlic (Allium sativum) extract inhibits lipopolysaccharide-induced toll-like receptor 4 dimerization. Biosci, Biotechnol, Biochem. 2008;72(2):368–75.

    Article  CAS  Google Scholar 

  25. Ahn S-I, Lee J-K, Youn H-S. Inhibition of homodimerization of toll-like receptor 4 by 6-shogaol. Mol Cells. 2009;27(2):211–5.

    Article  CAS  PubMed  Google Scholar 

  26. Wang WX, Abbruzzese JL, Evans DB, Larry L, Cleary KR, Chiao PJ. The nuclear factor-kappa B RelA transcription factor is constitutively activated in human pancreatic adenocarcinoma cells. Clin Cancer Res. 1999;5(1):119–27.

    CAS  PubMed  Google Scholar 

  27. Fujioka S, Sclabas GM, Schmidt C, Frederick WA, Dong QG, Abbruzzese JL, et al. Function of nuclear factor kappa B in pancreatic cancer metastasis. Clin Cancer Res. 2003;9(1):346–54.

    CAS  PubMed  Google Scholar 

  28. Albazaz R, Verbeke CS, Rahman SH, McMahon MJ. Cyclooxygenase-2 expression associated with severity of PanIN lesions: a possible link between chronic pancreatitis and pancreatic cancer. Pancreatology. 2005;5(4–5):361–9.

    Article  CAS  PubMed  Google Scholar 

  29. Yip-Schneider MT, Barnard DS, Billings SD, Cheng L, Heilman DK, Lin A, et al. Cyclooxygenase-2 expression in human pancreatic adenocarcinomas. Carcinogenesis. 2000;21(2):139–46.

    Article  CAS  PubMed  Google Scholar 

  30. Bai JR, Sui JH, Demirjian A, Vollmer CM, Marasco W, Callery MP. Predominant Bcl-XL knockdown disables antiapoptotic mechanisms: tumor necrosis factor-related apoptosis-inducing ligand-based triple chemotherapy overcomes chemoresistance in pancreatic cancer cells in vitro. Cancer Res. 2005;65(6):2344–52.

    Article  CAS  PubMed  Google Scholar 

  31. Tamm I, Kornblau SM, Segall H, Krajewski S, Welsh K, Kitada S, et al. Expression and prognostic significance of IAP-family genes in human cancers and myeloid leukemias. Clin Cancer Res. 2000;6(5):1796–803.

    CAS  PubMed  Google Scholar 

  32. Lee MA, Park GS, Lee HJ, Jung JH, Kang JH, Hong YS, et al. Survivin expression and its clinical significance in pancreatic cancer. BMC Cancer. 2005;5:127.

    Article  PubMed Central  PubMed  Google Scholar 

  33. de Oliveira JG, Silva AE. Polymorphisms of the TLR2 and TLR4 genes are associated with risk of gastric cancer in a Brazilian population. World J Gastroenterol. 2012;18(11):1235–42.

    Article  PubMed  Google Scholar 

  34. Ahmed A, Wang JH, Redmond HP. Silencing of TLR4 increases tumour progression and lung metastasis in a murine model of breast cancer. Br J Surg. 2011;98:26–6.

    Google Scholar 

  35. Huang B, Zhao J, Li HX, He KL, Chen YB, Mayer L, et al. Toll-like receptors on tumor cells facilitate evasion of immune surveillance. Cancer Res. 2005;65(12):5009–14.

    Article  CAS  PubMed  Google Scholar 

  36. Bold RJ, Virudachalam S, McConkey DJ. Chemosensitization of pancreatic cancer by inhibition of the 26S proteasome. J Surg Res. 2001;100(1):11–7.

    Article  CAS  PubMed  Google Scholar 

  37. Soukaina R, Christelle B, Celine P, Amor H. Gemcitabine-based chemogene therapy for pancreatic cancer using Ad-dCK::UMK GDEPT and TS/RR siRNA strategies. Neoplasia. 2009;11(7):637–50.

    Google Scholar 

  38. Mark SD, Hiromichi I, Michael JZ, Stanley WA, Edward EW. Inhibition of Src tyrosine kinase impairs inherent and acquired gemcitabine resistance in human pancreatic adenocarcinoma cells. Clin Cancer Res. 2004;10(7):2307–18.

    Article  Google Scholar 

  39. Rosemary AF, Blake B, Christine G, Angusg D. Mechanisms underlying gemcitabine resistance in pancreatic cancer and sensitisation by the iMiD™ lenalidomide. Anticancer Res. 2011;31(11):3747–56.

    Google Scholar 

  40. Banerjee S, Kaseb AO, Wang Z, Kong D, Mohammad M, Padhye S, et al. Antitumor activity of gemcitabine and oxaliplatin is augmented by thymoquinone in pancreatic cancer. Cancer Res. 2009;69(13):5575–83.

    Article  CAS  PubMed  Google Scholar 

  41. Banerjee S, Zhang YX, Ali S, Bhuiyan M, Wang ZW, Chiao PJ, et al. Molecular evidence for increased antitumor activity of gemcitabine by genistein in vitro and in vivo using an orthotopic model of pancreatic cancer. Cancer Res. 2005;65(19):9064–72.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation of China (No. 81001618), the National Science &Technology Pillar Program during the Twelfth Five-year Plan Period (2012BAI29B07), and program for New Century Excellent Talents in University (NCET-12-0976).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaojun Xu or Ping Li.

Additional information

Ling Zhou and Lianwen Qi contributed equally to this work.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 1615 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, L., Qi, L., Jiang, L. et al. Antitumor Activity of Gemcitabine Can Be Potentiated in Pancreatic Cancer through Modulation of TLR4/NF-κB signaling by 6-Shogaol. AAPS J 16, 246–257 (2014). https://doi.org/10.1208/s12248-013-9558-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-013-9558-3

Key words

Navigation