Skip to main content
Log in

Resveratrol Suppresses T0901317-Induced Hepatic Fat Accumulation in Mice

  • Research Article
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Liver X receptor (LXR) has been identified as a potential target for treatment of atherosclerosis and diabetes. Activation of LXR, however, is associated with increased lipogenesis and fat accumulation in the liver. The objective of the current study was to examine the effect of resveratrol on LXR activator-induced fat accumulation in liver using mice as an animal model. Three groups of C57BL/6 mice were studied. Animals in group 1 were treated with T0901317, a potent activator of LXR in mice. Animals in group 2 served as the control and were treated with carrier solution and those in group 3 were treated with T0901317/resveratrol combination. Using histochemical and biochemical methods, we demonstrate that resveratrol treatment significantly suppressed fat accumulation in the liver induced by T0901317. In addition, resveratrol completely blocked elevation of blood levels of triglyceride and cholesterol and reduced blood glucose level. Quantitative PCR analysis revealed that resveratrol treatment did not change the mRNA levels of abca1, abcg1, cyp7a1, srebp-1c, chrebp, and acc genes compared to that of animals treated with T0901317 alone but reduced pepck and g6p gene expressions. Immunohistochemistry and Western blot analyses show resveratrol treatment activated AMP-activated protein kinase (AMPK) and increased phosphorylation of acetyl-CoA carboxylase. Treatment with T0901317 on hepatocytes increased intracellular fat accumulation and this increase was suppressed by resveratrol; the suppressive effect of resveratrol was greatly repressed by Compound C which is an inhibitor of AMPK. Collectively, these data suggest that resveratrol blocks T0901317-induced lipid accumulation in the liver and can be considered for inclusion into the treatment of diseases involving activation of liver X receptor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

REFERENCES

  1. Janowski BA, Willy PJ, Devi TR, Falck JR, Mangelsdorf DJ. An oxysterol signalling pathway mediated by the nuclear receptor LXR alpha. Nature. 1996;383(6602):728–31.

    Article  PubMed  CAS  Google Scholar 

  2. Peet DJ, Turley SD, Ma W, Janowski BA, Lobaccaro JM, Hammer RE, et al. Cholesterol and bile acid metabolism are impaired in mice lacking the nuclear oxysterol receptor LXR alpha. Cell. 1998;93(5):693–704.

    Article  PubMed  CAS  Google Scholar 

  3. Chawla A, Boisvert WA, Lee CH, Laffitte BA, Barak Y, Joseph SB, et al. A PPAR gamma-LXR-ABCA1 pathway in macrophages is involved in cholesterol efflux and atherogenesis. Mol Cell. 2001;7(1):161–71.

    Article  PubMed  CAS  Google Scholar 

  4. Joseph SB, McKilligin E, Pei L, Watson MA, Collins AR, Laffitte BA, et al. Synthetic LXR ligand inhibits the development of atherosclerosis in mice. Proc Natl Acad Sci U S A. 2002;99(11):7604–9.

    Article  PubMed  CAS  Google Scholar 

  5. Steffensen KR, Gustafsson JA. Putative metabolic effects of the liver X receptor (LXR). Diabetes. 2004;53 Suppl 1:S36–42.

    Article  PubMed  CAS  Google Scholar 

  6. Mitro N, Mak PA, Vargas L, Godio C, Hampton E, Molteni V, et al. The nuclear receptor LXR is a glucose sensor. Nature. 2007;445(7124):219–23.

    Article  PubMed  CAS  Google Scholar 

  7. Cao GQ, Liang Y, Broderick CL, Oldham BA, Beyer TP, Schmidt RJ, et al. Antidiabetic action of a liver X receptor agonist mediated by inhibition of hepatic gluconeogenesis. J Biol Chem. 2003;278(2):1131–6.

    Article  PubMed  CAS  Google Scholar 

  8. Liu YJ, Yan CY, Wang Y, Nakagawa Y, Nerio N, Anghel A, et al. Liver X receptor agonist T0901317 inhibition of glucocorticoid receptor expression in hepatocytes may contribute to the amelioration of diabetic syndrome in db/db mice. Endocrinology. 2006;147(11):5061–8.

    Article  PubMed  CAS  Google Scholar 

  9. Schultz JR, Tu H, Luk A, Repa JJ, Medina JC, Li LP, et al. Role of LXRs in control of lipogenesis. Gene Dev. 2000;14(22):2831–8.

    Article  PubMed  CAS  Google Scholar 

  10. Repa JJ, Liang G, Ou J, Bashmakov Y, Lobaccaro JM, Shimomura I, et al. Regulation of mouse sterol regulatory element-binding protein-1c gene (SREBP-1c) by oxysterol receptors, LXRalpha and LXRbeta. Genes Dev. 2000;14(22):2819–30.

    Article  PubMed  CAS  Google Scholar 

  11. Cha JY, Repa JJ. The liver X receptor (LXR) and hepatic lipogenesis—the carbohydrate-response element-binding protein is a target gene of LXR. J Biol Chem. 2007;282(1):743–51.

    Article  PubMed  CAS  Google Scholar 

  12. Higuchi N, Kato M, Shundo Y, Tajiri H, Tanaka M, Yamashita N, et al. Liver X receptor in cooperation with SREBP-1c is a major lipid synthesis regulator in nonalcoholic fatty liver disease. Hepatol Res. 2008;38(11):1122–9.

    Article  PubMed  CAS  Google Scholar 

  13. Park SH, Gammon SR, Knippers JD, Paulsen SR, Rubink DS, Winder WW. Phosphorylation-activity relationships of AMPK and acetyl-CoA carboxylase in muscle. J Appl Physiol. 2002;92(6):2475–82.

    PubMed  CAS  Google Scholar 

  14. Wang GL, Fu YC, Xu WC, Feng YQ, Fang SR, Zhou XH. Resveratrol inhibits the expression of SREBP1 in cell model of steatosis via Sirt1-FOXO1 signaling pathway. Biochem Biophys Res Commun. 2009;380(3):644–9.

    Article  PubMed  CAS  Google Scholar 

  15. Baur JA, Sinclair DA. Therapeutic potential of resveratrol: the in vivo evidence. Nat Rev Drug Discov. 2006;5(6):493–506.

    Article  PubMed  CAS  Google Scholar 

  16. Farina A, Ferranti C, Marra C. An improved synthesis of resveratrol. Nat Prod Res. 2006;20(3):247–52.

    Article  PubMed  CAS  Google Scholar 

  17. Wang H, Liu L, Guo YX, Dong YS, Zhang DJ, Xiu ZL. Biotransformation of piceid in Polygonum cuspidatum to resveratrol by Aspergillus oryzae. Appl Microbiol Biotechnol. 2007;75(4):763–8.

    Article  PubMed  CAS  Google Scholar 

  18. Elmali N, Baysal O, Harma A, Esenkaya I, Mizrak B. Effects of resveratrol in inflammatory arthritis. Inflammation. 2007;30(1–2):1–6.

    Article  PubMed  CAS  Google Scholar 

  19. Szmitko PE, Verma S. Cardiology patient pages. Red wine and your heart. Circulation. 2005;111(2):e10–1.

    Article  PubMed  Google Scholar 

  20. Elliott PJ, Jirousek M. Sirtuins: novel targets for metabolic disease. Curr Opin Investig Drugs. 2008;9(4):371–8.

    PubMed  CAS  Google Scholar 

  21. Pearson KJ, Baur JA, Lewis KN, Peshkin L, Price NL, Labinskyy N, et al. Resveratrol delays age-related deterioration and mimics transcriptional aspects of dietary restriction without extending life span. Cell Metab. 2008;8(2):157–68.

    Article  PubMed  CAS  Google Scholar 

  22. Park SJ, Ahmad F, Philp A, Baar K, Williams T, Luo HB, et al. Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases. Cell. 2012;148(3):421–33.

    Article  PubMed  CAS  Google Scholar 

  23. Hara A, Radin NS. Lipid extraction of tissues with a low-toxicity solvent. Anal Biochem. 1978;90(1):420–6.

    Article  PubMed  CAS  Google Scholar 

  24. Carmona MC, Louche K, Nibbelink M, Prunet B, Bross A, Desbazeille M, et al. Fenofibrate prevents Rosiglitazone-induced body weight gain in ob/ob mice. Int J Obes. 2005;29(7):864–71.

    Article  CAS  Google Scholar 

  25. Gupta S, Pandak WM, Hylemon PB. LXR alpha is the dominant regulator of CYP7A1 transcription. Biochem Biophys Res Commun. 2002;293(1):338–43.

    Article  PubMed  CAS  Google Scholar 

  26. Dentin R, Girard J, Postic C. Carbohydrate responsive element binding protein (ChREBP) and sterol regulatory element binding protein-1c (SREBP-1c): two key regulators of glucose metabolism and lipid synthesis in liver. Biochimie. 2005;87(1):81–6.

    Article  PubMed  CAS  Google Scholar 

  27. Barthel A, Schmoll D. Novel concepts in insulin regulation of hepatic gluconeogenesis. Am J Physiol Endocrinol Metab. 2003;285(4):E685–92.

    PubMed  CAS  Google Scholar 

  28. Yoon JC, Puigserver P, Chen GX, Donovan J, Wu ZD, Rhee J, et al. Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1. Nature. 2001;413(6852):131–8.

    Article  PubMed  CAS  Google Scholar 

  29. Gao M, Liu D. The liver X receptor agonist T0901317 protects mice from high fat diet-induced obesity and insulin resistance. AAPS J. 2013;15(1):258–66.

    Article  PubMed  CAS  Google Scholar 

  30. Laffitte BA, Chao LC, Li J, Walczak R, Hummasti S, Joseph SB, et al. Activation of liver X receptor improves glucose tolerance through coordinate regulation of glucose metabolism in liver and adipose tissue. Proc Natl Acad Sci USA. 2003;100(9):5419–24.

    Article  PubMed  CAS  Google Scholar 

  31. Ajmo JM, Liang XM, Rogers CQ, Pennock B, You M. Resveratrol alleviates alcoholic fatty liver in mice. Am J Physiol Gastrointest Liver. 2008;295(4):G833–42.

    Article  CAS  Google Scholar 

  32. Borra MT, Smith BC, Denu JM. Mechanism of human SIRT1 activation by resveratrol. J Biol Chem. 2005;280(17):17187–95.

    Article  PubMed  CAS  Google Scholar 

  33. Kaeberlein M, McDonagh T, Heltweg B, Hixon J, Westman EA, Caldwell SD, et al. Substrate-specific activation of sirtuins by resveratrol. J Biol Chem. 2005;280(17):17038–45.

    Article  PubMed  CAS  Google Scholar 

  34. Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C, Kalra A, et al. Resveratrol improves health and survival of mice on a high-calorie diet. Nature. 2006;444(7117):337–42.

    Article  PubMed  CAS  Google Scholar 

  35. Hou XY, Xu SQ, Maitland-Toolan KA, Sato K, Jiang BB, Ido YS, et al. SIRT1 regulates hepatocyte lipid metabolism through activating AMP-activated protein kinase. J Biol Chem. 2008;283(29):20015–26.

    Article  PubMed  CAS  Google Scholar 

  36. Price NL, Gomes AP, Ling AJY, Duarte FV, Martin-Montalvo A, North BJ, et al. SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function. Cell Metab. 2012;15(5):675–90.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dexi Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, M., Liu, D. Resveratrol Suppresses T0901317-Induced Hepatic Fat Accumulation in Mice. AAPS J 15, 744–752 (2013). https://doi.org/10.1208/s12248-013-9473-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-013-9473-7

KEY WORDS

Navigation