Skip to main content

Advertisement

Log in

The Immunosuppressive Activity of Polymeric Micellar Formulation of Cyclosporine A: In Vitro and In Vivo Studies

  • Research Article
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

We have previously developed micelles of methoxy poly(ethylene oxide)-b-poly(ε-caprolactone) as vehicles for the solubilization and delivery of cyclosporine A (CsA). These micelles were able to reduce the renal uptake and nephrotoxicity of CsA. The purpose of the current study was to test the efficacy of polymeric micellar formulation of CsA (PM-CsA) in suppressing immune responses by either T cells or dendritic cells (DCs). The performance of PM-CsA was compared to that of the commercially available formulation of CsA (Sandimmune®). Our results demonstrate that PM-CsA could exert a potent immunosuppressive effect similar to that of Sandimmune® both in vitro and in vivo. Both formulations inhibited phenotypic maturation of DCs and impaired their allostimulatory capacity. Furthermore, both PM-CsA and Sandimmune® have shown similar dose-dependent inhibition of in vitro T cell proliferative responses. A similar pattern was observed in the in vivo study, where T cells isolated from both PM-CsA-treated and Sandimmune®-treated mice have shown impairment in their proliferative response and IFN-γ production at similar levels. These results highlight the potential of polymeric micelles to serve as efficient vehicles for the delivery of CsA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

REFERENCES

  1. Italia JL, Bhardwaj V, Kumar MN. Disease, destination, dose and delivery aspects of ciclosporin: the state of the art. Drug Discov Today. 2006;11(17–18):846–54.

    Article  PubMed  CAS  Google Scholar 

  2. Faulds D, Goa KL, Benfield P. Cyclosporin. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic use in immunoregulatory disorders. Drugs. 1993;45(6):953–1040.

    Article  PubMed  CAS  Google Scholar 

  3. Ismailos G, Reppas C, Dressman JB, Macheras P. Unusual solubility behaviour of cyclosporin A in aqueous media. J Pharm Pharmacol. 1991;43(4):287–9.

    Article  PubMed  CAS  Google Scholar 

  4. Beauchesne PR, Chung NS, Wasan KM. Cyclosporine A: a review of current oral and intravenous delivery systems. Drug Dev Ind Pharm. 2007;33(3):211–20.

    Article  PubMed  CAS  Google Scholar 

  5. Czogalla A. Oral cyclosporine A—the current picture of its liposomal and other delivery systems. Cell Mol Biol Lett. 2009;14(1):139–52.

    Article  PubMed  CAS  Google Scholar 

  6. Aliabadi HM, Mahmud A, Sharifabadi AD, Lavasanifar A. Micelles of methoxy poly(ethylene oxide)-b-poly(epsilon-caprolactone) as vehicles for the solubilization and controlled delivery of cyclosporine A. J Control Release. 2005;104(2):301–11.

    Article  PubMed  CAS  Google Scholar 

  7. Aliabadi HM, Brocks DR, Lavasanifar A. Polymeric micelles for the solubilization and delivery of cyclosporine A: pharmacokinetics and biodistribution. Biomaterials. 2005;26(35):7251–9.

    Article  PubMed  Google Scholar 

  8. Aliabadi HM, Elhasi S, Brocks DR, Lavasanifar A. Polymeric micellar delivery reduces kidney distribution and nephrotoxic effects of Cyclosporine A after multiple dosing. J Pharm Sci. 2008;97(5):1916–26.

    Article  PubMed  CAS  Google Scholar 

  9. Nishiyama N, Kato Y, Sugiyama Y, Kataoka K. Cisplatin-loaded polymer-metal complex micelle with time-modulated decaying property as a novel drug delivery system. Pharm Res. 2001;18(7):1035–41.

    Article  PubMed  CAS  Google Scholar 

  10. Kwon GS, Yokoyama M, Okano T, Sakurai Y, Kataoka K. Biodistribution of micelle-forming polymer-drug conjugates. Pharm Res. 1993;10(7):970–4.

    Article  PubMed  CAS  Google Scholar 

  11. Zhang X, Burt HM, Mangold G, Dexter D, Von Hoff D, Mayer L, et al. Anti-tumor efficacy and biodistribution of intravenous polymeric micellar paclitaxel. Anticancer Drugs. 1997;8(7):696–701.

    Article  PubMed  CAS  Google Scholar 

  12. Ho S, Clipstone N, Timmermann L, Northrop J, Graef I, Fiorentino D, et al. The mechanism of action of cyclosporin A and FK506. Clin Immunol Immunopathol. 1996;80(3 Pt 2):S40–5.

    Article  PubMed  CAS  Google Scholar 

  13. Geng L, Dong S, Fang Y, Jiang G, Xie H, Shen M, et al. Cyclosporin a up-regulates B7-DC expression on dendritic cells in an IL-4-dependent manner in vitro, which is associated with decreased allostimulatory capacity of dendritic cells. Immunopharmacol Immunotoxicol. 2008;30(2):399–409.

    Article  PubMed  CAS  Google Scholar 

  14. Chen T, Guo J, Yang M, Han C, Zhang M, Chen W, et al. Cyclosporin A impairs dendritic cell migration by regulating chemokine receptor expression and inhibiting cyclooxygenase-2 expression. Blood. 2004;103(2):413–21.

    Article  PubMed  CAS  Google Scholar 

  15. Duperrier K, Farre A, Bienvenu J, Bleyzac N, Bernaud J, Gebuhrer L, et al. Cyclosporin A inhibits dendritic cell maturation promoted by TNF-alpha or LPS but not by double-stranded RNA or CD40L. J Leukoc Biol. 2002;72(5):953–61.

    PubMed  CAS  Google Scholar 

  16. Aliabadi HM, Elhasi S, Mahmud A, Gulamhusein R, Mahdipoor P, Lavasanifar A. Encapsulation of hydrophobic drugs in polymeric micelles through co-solvent evaporation: the effect of solvent composition on micellar properties and drug loading. Int J Pharm. 2007;329(1–2):158–65.

    Article  PubMed  CAS  Google Scholar 

  17. Lutz MB, Kukutsch N, Ogilvie AL, Rossner S, Koch F, Romani N, et al. An advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow. J Immunol Methods. 1999;223(1):77–92.

    Article  PubMed  CAS  Google Scholar 

  18. Azzi J, Tang L, Moore R, Tong R, El Haddad N, Akiyoshi T, et al. Polylactide-cyclosporin A nanoparticles for targeted immunosuppression. FASEB J. 2010;24(10):3927–38.

    Article  PubMed  CAS  Google Scholar 

  19. Vitko S, Viklicky O. Cyclosporine renal dysfunction. Transplant Proc. 2004;36(2 Suppl):243S–7.

    Article  PubMed  CAS  Google Scholar 

  20. Kalthoff F, Elbe-Burger A. RE: effects of cyclosporine on human dendritic cell subsets. Transplant Proc. 2005;37(10):4639–40.

    Article  PubMed  Google Scholar 

  21. Ciesek S, Ringe BP, Strassburg CP, Klempnauer J, Manns MP, Wedemeyer H, et al. Effects of cyclosporine on human dendritic cell subsets. Transplant Proc. 2005;37(1):20–4.

    Article  PubMed  CAS  Google Scholar 

  22. Tajima K, Amakawa R, Ito T, Miyaji M, Takebayashi M, Fukuhara S. Immunomodulatory effects of cyclosporin A on human peripheral blood dendritic cell subsets. Immunology. 2003;108(3):321–8.

    Article  PubMed  CAS  Google Scholar 

  23. Akool el S, Doller A, Babelova A, Tsalastra W, Moreth K, Schaefer L, et al. Molecular mechanisms of TGF beta receptor-triggered signaling cascades rapidly induced by the calcineurin inhibitors cyclosporin A and FK506. J Immunol. 2008;181(4):2831–45.

    Google Scholar 

  24. Li B, Sehajpal PK, Khanna A, Vlassara H, Cerami A, Stenzel KH, et al. Differential regulation of transforming growth factor beta and interleukin 2 genes in human T cells: demonstration by usage of novel competitor DNA constructs in the quantitative polymerase chain reaction. J Exp Med. 1991;174(5):1259–62.

    Article  PubMed  CAS  Google Scholar 

  25. Haddadi A, Elamanchili P, Lavasanifar A, Das S, Shapiro J, Samuel J. Delivery of rapamycin by PLGA nanoparticles enhances its suppressive activity on dendritic cells. J Biomed Mater Res A. 2008;84(4):885–98.

    PubMed  Google Scholar 

  26. Hao J, Kwissa M, Pulendran B, Murthy N. Peptide crosslinked micelles: a new strategy for the design and synthesis of peptide vaccines. Int J Nanomedicine. 2006;1(1):97–103.

    Article  PubMed  CAS  Google Scholar 

  27. Boudier A, Aubert-Pouessel A, Louis-Plence P, Gerardin C, Jorgensen C, Devoisselle JM, et al. The control of dendritic cell maturation by pH-sensitive polyion complex micelles. Biomaterials. 2009;30(2):233–41.

    Article  PubMed  CAS  Google Scholar 

  28. Liao YP, Wang CC, Butterfield LH, Economou JS, Ribas A, Meng WS, et al. Ionizing radiation affects human MART-1 melanoma antigen processing and presentation by dendritic cells. J Immunol. 2004;173(4):2462–9.

    PubMed  CAS  Google Scholar 

  29. Varela MC, Guzman M, Molpeceres J, del Rosario Aberturas M, Rodriguez-Puyol D, Rodriguez-Puyol M. Cyclosporine-loaded polycaprolactone nanoparticles: immunosuppression and nephrotoxicity in rats. Eur J Pharm Sci. 2001;12(4):471–8.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors would like to thank Elaine Moase for proof reading the manuscript. The authors would like to acknowledge financial support by research grant from Natural Sciences and Engineering Council of Canada (STPGP 336987).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Afsaneh Lavasanifar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamdy, S., Haddadi, A., Shayeganpour, A. et al. The Immunosuppressive Activity of Polymeric Micellar Formulation of Cyclosporine A: In Vitro and In Vivo Studies. AAPS J 13, 159–168 (2011). https://doi.org/10.1208/s12248-011-9259-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-011-9259-8

KEY WORDS

Navigation