Research Article Theme: Pharmacokinetic/Pharmadynamic Modeling and Simulation in Drug Discovery and Translational Research

The AAPS Journal

, Volume 13, Issue 2, pp 169-178

First online:

From Target Selection to the Minimum Acceptable Biological Effect Level for Human Study: Use of Mechanism-based PK/PD Modeling to Design Safe and Efficacious Biologics

  • Jing YuAffiliated withNovartis Institutes for Biomedical Research Email author 
  • , Helene KarcherAffiliated withNovartis Pharma AG
  • , Adam L. FeireAffiliated withNovartis Institutes for Biomedical Research
  • , Philip J. LoweAffiliated withNovartis Pharma AG


In this paper, two applications of mechanism-based modeling are presented with their utility from candidate selection to first-in-human dosage selection. The first example is for a monoclonal antibody against a cytomegalovirus glycoprotein complex, which involves an antibody binding model and a viral load model. The model was used as part of a feasibility analysis prior to antibody generation, setting the specifications for the affinity needed to achieve a desired level of clinical efficacy. The second example is a pharmacokinetic–pharmacodynamic model based on a single-dose pharmacology study in cynomolgus monkey using data on pharmacokinetics, receptor occupancy, and the dynamics of target cell depletion and recovery. The model was used to estimate the MABEL, here defined as the minimum acceptable biological effect level against which a dose is selected for a first-in-human study. From these applications, we demonstrate that mechanism-based PK/PD binding models are useful for predicting human response to biologics compounds. Especially, such models have the ability to integrate preclinical and clinical, in vitro and in vivo information and facilitate rational decision making during various stages of drug discovery and translational research.

Key words

biologics candidate selection first-in-human dosage selection mechanism-based pharmacokinetic–pharmacodynamic model