Skip to main content

Advertisement

Log in

Autoradiography, MALDI-MS, and SIMS-MS Imaging in Pharmaceutical Discovery and Development

  • Review Article
  • Theme: Imaging in Drug Development and Therapeutics
  • Published:
The AAPS Journal Aims and scope Submit manuscript

An Erratum to this article was published on 18 December 2009

Abstract

Whole-body autoradiography ((WBA) or quantitative WBA (QWBA)), microautoradiography (MARG), matrix-assisted laser desorption/ionization mass spectrometric imaging (MALDI-MSI), and secondary ion mass spectrometric imaging (SIMS-MSI) are high-resolution, molecular imaging techniques used to study the tissue distribution of radiolabeled and nonlabeled compounds in ex vivo, in situ biological samples. WBA, which is the imaging of the whole-body of lab animals, and/or their organ systems; and MARG, which provides information on the localization of radioactivity in histological preparations and at the cellular level, are used to support drug discovery and development efforts. These studies enable the conduct of human radiolabeled metabolite studies and have provided pharmaceutical scientists with a high resolution and quantitative method of accessing tissue distribution. MALDI-MSI is a mass spectrometric imaging technique capable of label-free and simultaneous determination of the identity and distribution of xenobiotics and their metabolites as well as endogenous substances in biological samples. This makes it an interesting extension to WBA and MARG, eliminating the need for radiochemistry and providing molecular specific information. SIMS-MSI offers a complementary method to MALDI-MSI for the acquisition of images with higher spatial resolution directly from biological specimens. Although traditionally used for the analysis of surface films and polymers, SIMS has been used successfully for the study of biological tissues and cell types, thus enabling the acquisition of images at submicrometer resolution with a minimum of samples preparation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Hahn EJ. Autoradiography: a review of basic principles. Am Lab. 1983;15:64–71.

    CAS  Google Scholar 

  2. Luckey G. US Patent. 1975;3,859,527.

  3. Niepse de Saint Victor, Compt Rend. 1867;65:505-7. In: Rogers AW, editor. Techniques of autoradiography. Elsevier Scientific Publishing Company; 1973.

  4. London ES. O fiziologopatologicheskrom znachenii emanastii radya (Physiopathological importance of radium emanation). Russki Vrach (St. Petersburg). 1904;3:869–72.

    Google Scholar 

  5. Dziewaitkovski DD. Sulfate-sulfur metabolism in the rat fetus as indicated by sulfur-35. J Exp Med. 1953;98:119.

    Article  Google Scholar 

  6. Ullberg S. Studies on the distribution and fate of 35S-labelled benzylpenicillin in the body. Acta Radiol Suppl. 1954;118:1–110.

    CAS  PubMed  Google Scholar 

  7. Cohen Y, Epierre JW. Methode d'etude autoradiographique de substances marquées volatiles, Rapport C.E.A. 2071; 1961.

  8. Pellerin P. La technique d'autoradiographie anatomique à la température de l'azote liquide. Pathol Biol Sent Hôp. 1961;9:233.

    CAS  Google Scholar 

  9. Martin LE, Harrison C, Bates CM. A simple low-temperature radioautographic technique. Biochem J. 1962;82:17P.

    Google Scholar 

  10. Kalberer F. A new method of macroautoradiography. Adv Tracer Methodol. 1966;3:139.

    CAS  PubMed  Google Scholar 

  11. Ullberg S. The technique of whole-body autoradiography: cryosectioning of large specimens. In: Elvefeldt O, editor. Special issue on whole-body autoradiography LKB Instr J. Science Tools. Bromma Sweden; 1977.

  12. Berlin M, Ullberg S. Accumulation and retention of mercury in the mouse. Arch Environ Health. 1963;6:589.

    CAS  PubMed  Google Scholar 

  13. Kutzim H. The quantitative determination of the distribution of S35-sulfate in mice using autoradiography. Nucl Med (Stuttg). 1962;15(3):39–50.

    Google Scholar 

  14. Cross SAM, Groves AD, Hesselbo T. A quantitative method for measuring radioactivity in tissues sectioned for whole body radiography. Int J Appl Radiat Isot. 1974;25:381–6.

    Article  CAS  PubMed  Google Scholar 

  15. Longshaw S, Fowler JSL. A poly (methy l4C) methacrylate source for use in whole-body autoradiography and beta-radiography. Xenobiotica. 1978;8:289–95.

    Article  CAS  PubMed  Google Scholar 

  16. Coe RAJ. An evaluation of X-ray films suitable for autoradiographs using ß14C radiation. Int J Appl Radiat Isot. 1982;36:93–6.

    Google Scholar 

  17. Franklin ER. The use of measurements of radiographic film response of X-ray film in quantitative and semi-quantitative autoradiography. Int J Appl Radiat Isot. 1985;36:193–6.

    Article  CAS  PubMed  Google Scholar 

  18. Geary WA II, Toga AW, Wooten GF. Quantitative film autoradiography for tritium: methodological considerations. Brain Res. 1985;337:99–118.

    Article  CAS  PubMed  Google Scholar 

  19. Steinke W, Archimbaud Y, Becka M, Binder R, Busch U, Dupont P, et al. Quantitative distribution studies in animals: cross-validation of radioluminography versus liquid-scintillation measurement. Regul Toxicol Pharmacol. 2000;31:S33–43.

    Article  CAS  PubMed  Google Scholar 

  20. Schweitzer A, Fahr A, Niederberger W. A simple method for quantitation of 14C-whole-body autoradiograms. Appl Radiat Isotopes. 1975;33:329–33.

    Google Scholar 

  21. Coulson F, Carr CJ, editors. The validation of radioluminography for sue in quantitative distribution studies. Regul Toxicol Pharmacol (Special Edition). 2000;31(2), part 2 of 2 parts.

  22. Sonada M, Takana M, Miyahara J, Kato H. Computed radiography utilising scanning laser stimulated luminescence. Radiology. 1988;148:833–8.

    Google Scholar 

  23. Miyahara J. The imaging plate: a new radiation image sensor. Chem Today. 1989;223:29–36.

    Google Scholar 

  24. Shigematsu A, Motoji N, Hatori A, Satoh T. Progressive application of autoradiography in pharmaceutical and metabolic studies for development of new drugs. Regul Toxicol Pharmacol. 1990;22:122–42.

    Article  Google Scholar 

  25. Mori K, Hamaoka T. Protein, nucleic acid enzyme. 39:181–91. In: Kolbe H, Dietzel G, editors. Techincal validation of radioluminography systems. Regul Toxicol Pharmacol (Special Edition). 2000;31:S5–14.

  26. Motoji N, Hayama E, Shigematsu A. Radioluminography for quantitative autoradiography of 14C. Eur J Drug Metab Pharmacokinet. 1995;20:89–105.

    CAS  PubMed  Google Scholar 

  27. Potchioba MJ, Tensfeldt TG, Nocerini MR, Silber BM. A novel quantitative method for determining the biodistribution of radiolabeled xenobiotics using whole-body cryosectioning. J Pharmacol Exp Ther. 1995;272:953–62.

    Google Scholar 

  28. Tanaka M. Collaborative studies on the distribution and metabolism of radiolabelled drugs using radioluminography. Xenobiot Metabol Dispos. 1994;9:393–407.

    Google Scholar 

  29. Jeavons AP, Hood K, Herlin O, et al. The high density avalanche chamber for positron emission tomography. IEEE Trans Nucl Sci. 1983;30:640–5.

    Article  Google Scholar 

  30. Charpak G, Imrie D, Jeanjean J, Miné P, Nguyen H, Scigocki D, et al. A new approach to positron emission tomography. Eur J Nucl Med. 1989;15:690–3.

    Article  CAS  PubMed  Google Scholar 

  31. d’Argy R, Sundwall A. Quantitative whole-body autoradioluminography—future strategy for balance and tissue distribution studies. Regul Toxicol Pharmacol. 2000;31(2):S57–62.

    Article  PubMed  CAS  Google Scholar 

  32. Solon EG, Kraus L. Quantitative whole-body autoradiography in the pharmaceutical. Survey results on study design, methods and regulatory compliance. J Pharmacol Toxicol Methods. 2002;43:73–81.

    Google Scholar 

  33. Kaim A, Weber B, Kurrer M, Westera G, Schweitzer A, Gottschalk J, et al. 18F-FDG and 18F-FET uptake in experimental soft tissue infection. Eur J Nucl Med. 2002;29:648–54.

    Article  CAS  Google Scholar 

  34. Schweitzer A, Hasler-Nguyen N, Zijlstra J. Preferential uptake of the non steroid anti-inflammatory drug diclofenac into inflamed tissues after a single oral dose in rats. BMC Pharmacol. 2009;9:5.

    Article  CAS  PubMed  Google Scholar 

  35. Solon E, Balani SK, Lee FW. Whole-body autoradiography in drug discovery. Curr Drug Metab. 2002;3:451–62.

    Article  CAS  PubMed  Google Scholar 

  36. Foster C, Howard L, Schweitzer A, Persohn E, Hiestand P, Balatoni B, et al. Brain penetration of the oral immunomodulatory drug FTY720 and its phosphorylation in the central nervous system during experimental autoimmune encephalomyelitis: consequences for mode of action in multiple sclerosis. JPET. 2007;323:469–76.

    Article  CAS  Google Scholar 

  37. Weiss H, Pfaar U, Schweitzer A, Wiegand H, Skerjanec A, Schran H. Biodistribution and plasma protein binding of zoledronic acid. Drug Metab Dispos. 2008;36:2043–9.

    Article  CAS  PubMed  Google Scholar 

  38. Potchioba MJ, Nocerini MR. Utility of whole-body autoradiography in drug discovery for the quantification of tritium-labeled drug candidates. Drug Metab Dispos. 2004;32(10):1190–8.

    Google Scholar 

  39. Bruin G, Faller T, Wiegand H, Schweitzer A, Nick H, Schneider J, et al. Pharmacokinetics, distribution, metabolism, and excretion of deferasinox and its iron complex in rats. Drug Metab Dispos. 2008;36:2523–38.

    Article  CAS  PubMed  Google Scholar 

  40. Solon E. Autoradiography: high-resolution molecular imaging in pharmaceutical discovery and development. Ex Opin Drug Discov. 2007;2(4):503–14.

    Article  CAS  Google Scholar 

  41. Rico A, Benard P, Braun JP, Burgat-Sacaze V. Application of macroscopic autoradiography to large animals in veterinary pharmacokinetics: the distribution of sodium selenite labelled with 75Se in the pig. Ann Rech Vét. 1978;9:25–32.

    CAS  PubMed  Google Scholar 

  42. Baker JRJ. Autoradiography: a comprehensive review. Royal microscopical society, microscopy handbooks 18. Oxford Science Publications; 1989. pp. 30–32.

  43. Stumpf WE. Drug localization in tissues and cells. IDDC Press. Library of Congress Control Number 2003105179; 2003.

  44. Stumpf WE, Roth LJ. Vacuum freeze drying of frozen sections for dry-mounting high resolution autoradiography. Stain Technol. 1964;39:219–23.

    CAS  PubMed  Google Scholar 

  45. Lacassagne A, Lattes J. R’éparitiondu polonium (injecté sous la peau) dans l’organisme de rats porteurs de griffes cancereuses. C R Séance Soc Biol. 1924;90:352–3.

    CAS  Google Scholar 

  46. Bélanger LF, Leblond CP. A method for locating radioactive elements in tissues by covering histological sections with a photographic emulsion. Endocrinology. 1946;39:8.

    Article  Google Scholar 

  47. Joftes DL, Warren S. Simplified liquid emulsion radioautography. J Biol Photogr Assoc. 1955;23(4):145–50.

    CAS  PubMed  Google Scholar 

  48. Appleton TC. Autoradiography of soluble labeled compounds. J R Microsc Soc. 1964;83:277–81.

    Article  CAS  PubMed  Google Scholar 

  49. Caro LG. Electron microscopic radiography of thin sections—golgi zone as a site of protein concentration in pancreatic acinar cells. J Biophys Biochem Cytol. 1961;10:37.

    Article  CAS  PubMed  Google Scholar 

  50. Nagata T. Techniques and application of microscopic autoradiography. Histol Histopathol. 1997;12:1091–124.

    CAS  PubMed  Google Scholar 

  51. Rauvast V, Mavon A. Transfollicular delivery of linoleic acid in human scalp skin: permeation study and microautoradiographic analysis. Int J Cosmet Sci. 2006;28(2):117–23.

    Article  Google Scholar 

  52. Hayakawa N, Kubota N, Imai N, Stumpf WE. Receptor microscopic autoradiography for the study of percutaneous absorption, in vivo skin penetration, and cellular–intercellular deposition. J Pharmacol Toxicol Methods. 2004;50(2):131–7.

    Article  CAS  PubMed  Google Scholar 

  53. Young LS, Regan MC, Sweeney P, Barry KM, Ryan MP, Fitzpatrick JM. Changes in regional renal blood flow after unilateral nephrectomy using the techniques of autoradiography and microautoradiography. J Urol. 1998;160:926–31.

    Article  CAS  PubMed  Google Scholar 

  54. Ogura T, Toshio N, Asano N, Katayama E, Oishi T, Mimura Y, et al. In vitro micro-autoradiography of atrial natriuretic peptide in biopsy specimens from patients with renal diseases. J Med. 1994;25:203–17.

    CAS  PubMed  Google Scholar 

  55. Yamato M, Kataoka Y, Mizuma H, Wada Y, Watanabe Y. PET and macro- and microautoradiographic studies combined with immunohistochemistry for monitoring rat intestinal ulceration and healing processes. J Nucl Med. 2009;50:266–73.

    Article  PubMed  Google Scholar 

  56. Coe RAJ. Quantitative whole-body autoradiography. Regul Toxicol Pharmacol. 2000;31.2:S1–3.

    Article  Google Scholar 

  57. McDonnell LA, Heeren RMA. Imaging mass spectrometry. Mass Spectrom Rev. 2007;26.4:606–43.

    Article  CAS  Google Scholar 

  58. Rohner TC, Staab D, Stoeckli M. MALDI mass spectrometric imaging of biological tissue sections. Mech Ageing Dev. 2005;126:177–85.

    Article  CAS  PubMed  Google Scholar 

  59. Stoeckli M, Staab D, Schweitzer A. Compound and metabolite distribution measured by MALDI mass spectrometric imaging in whole-body tissue sections. Int J Mass Spectrom. 2007;260(2–3):195–202.

    CAS  Google Scholar 

  60. Khatib-Shahidi S, Andersson M, Herman JL, Gillespie TA, Caprioli RM. Direct molecular analysis of whole-body animal tissue sections by imaging MALDI mass spectrometry. Anal Chem. 2006;78(18):6448–56.

    Article  CAS  PubMed  Google Scholar 

  61. Karas M, Bachmann D, Bahr U, Hillenkamp F. Matrix-assisted ultraviolet laser desorption of non-volatile compounds. Int J Mass Spectrom Ion Process. 1987;78:53–68.

    Article  CAS  Google Scholar 

  62. Van Berkel GJ, et al. Liquid microjunction surface sampling probe electrospray mass spectrometry for detection of drugs and metabolites in thin tissue sections. J Mass Spectrom. 2008;43(4):500–8.

    Article  PubMed  CAS  Google Scholar 

  63. Wiseman JM, et al. Desorption electrospray ionization mass spectrometry: imaging drugs and metabolites in tissues. Proc Natl Acad Sci USA. 2008;105(47):18120–5.

    Article  PubMed  Google Scholar 

  64. Burns MS. Applications of secondary ion mass-spectrometry (Sims) in biological-research—a review. J Micros-Oxford. 1982;127:237–58.

    CAS  Google Scholar 

  65. Taira S, et al. Nanoparticle-assisted laser desorption/ionization based mass imaging with cellular resolution. Anal Chem. 2008;80:4761–6.

    Article  CAS  PubMed  Google Scholar 

  66. Teng C, Hsun H, Kun C, Lin YS, Chen Y-C. Gold nanoparticles as selective and concentrating probes for samples in MALDI MS analysis. Anal Chem. 2004;76(15):4337–42.

    Article  CAS  PubMed  Google Scholar 

  67. Heeren RMA, McDonnell LA, Amstalden E, Luxembourg SL, Altelaar AFM, Piersma SR. Why don’t biologists use SIMS? A critical evaluation of imaging MS. Appl Surf Sci. 2006;252:6827–35.

    Article  CAS  Google Scholar 

  68. McDonnell LA, Heeren RMA, de Lange RPJ, Fletcher IW. Higher sensitivity secondary ion mass spectrometry of biological molecules for high resolution, chemically specific imaging. J Am Soc Mass Spectrom. 2006;17:1195–202.

    Article  CAS  PubMed  Google Scholar 

  69. Liebl HJ. Ion microprobe mass analyzer. J Appl Phys. 1967;38:5277–80.

    Article  CAS  Google Scholar 

  70. Chait BT, Standing KG. Secondary ion mass spectrometry of oligopeptides. Int J Mass Spectrom Ion Phys. 1981;40:185–93.

    Article  CAS  Google Scholar 

  71. Levi-Setti R, Hallegot P, Girod C, Chabala JM, Li J, Sadonis A, et al. Critical issues in the application of a gallium probe to high resolution secondary ion imaging. Surf Sci. 1991;246:94–106.

    Article  CAS  Google Scholar 

  72. Walker AV. Why is SIMS underused in chemical and biological analysis? Challenges and opportunities. Anal Chem. 2008;80:8865–70.

    Article  CAS  PubMed  Google Scholar 

  73. Nagy G, Gelb LD, Walker AV. An investigation of enhanced secondary ion emission under \( Au(n) + \left( {n = 1-7} \right) \) bombardment. J Am Soc Mass Spectrom. 2005;16:733–42.

    Article  CAS  PubMed  Google Scholar 

  74. Todd PJ, Schaff TG, Chaurand P, Caprioli RM. Organic ion imaging of biological tissue with MALDI and SIMS. J Mass Spectrom. 2001;36:355–69.

    Article  CAS  PubMed  Google Scholar 

  75. Jones EA, Lockyer NP, Vickerman JC. Depth profiling brain tissue sections with a 40 keV C60+ primary ion beam. Int J Mass Spectrom. 2007;260:146–57.

    Article  CAS  Google Scholar 

  76. Debois D, Brunelle A, Laprevote O. Attempts for molecular depth profiling directly on a rat brain tissue section using fullerene and bismuth cluster ion beams. Int J Mass Spectrom. 2007;260:115–20.

    Article  CAS  Google Scholar 

  77. Maier O, Oberle V, Hoekstra D. Fluorescent lipid probes: some properties and applications (a review). Chem Phys Lipids. 2002;116:3–18.

    Article  CAS  PubMed  Google Scholar 

  78. Chandra S, Smith DR, Morrison GH. Subcellular imaging by dynamic SIMS ion microscopy. Anal Chem. 2000;202:217–29.

    Google Scholar 

  79. Strick R, Strissel PL, Gavrilov K, Levi-Setti R. Cation-chromatin binding as shown by ion microscopy is essential for the structural integrity of chromosomes. J Cell Biol. 2002;155:899–910.

    Article  Google Scholar 

  80. Ostrowski SG, Kurczy ME, Roddy TP, Winograd N, Ewing AG. SIMS imaging of cholesterol in membranes of fluorescently identified single cells. Anal Chem. 2007;79:3554–60.

    Article  CAS  PubMed  Google Scholar 

  81. McQuaw CM, Zheng L, Ewing AG, Winograd N. Localization of sphingomyelin in cholesterol domains by imaging mass spectrometry. Langmuir. 2007;23:5645–50.

    Article  CAS  PubMed  Google Scholar 

  82. Fletcher JS, Rabbani S, Henderson A, Blenkinsopp P, Thompson SP, Lockyer NP, et al. A new dynamic in mass spectral imaging of single biological cells. Anal Chem. 2008;80:9058–64.

    Article  CAS  PubMed  Google Scholar 

  83. Parry S, Winograd N. High-resolution TOF-SIMS imaging of eukaryotic cells preserved in a trehalose matrix. Anal Chem. 2005;77:7950–7.

    Article  CAS  PubMed  Google Scholar 

  84. Altelaar AFM, Klinkert I, Jalink K, de Lange RPJ, Adan RAH, Heeren RMA, et al. Gold-enhanced biomolecular surface imaging of cells and tissue by SIMS and MALDI mass spectrometry. Anal Chem. 2006;78:734–42.

    Article  CAS  PubMed  Google Scholar 

  85. Touboul D, Kollmer F, Niehuis E, Brunelle A, Laprevote O. Improvement of biological time-of-flight-secondary ion mass spectrometry imaging with a bismuth cluster ion source. J Am Soc Mass Spectrom. 2005;16:1608–18.

    Article  CAS  PubMed  Google Scholar 

  86. Malmberg P, Börner K, Yun C, Friberg P, Hagenhoff B, Mansson JE, et al. Localization of lipids in the aortic wall with imaging TOF-SIMS. Biochim Biophys Acta. 2007;1771:185–95.

    CAS  PubMed  Google Scholar 

  87. Debois D, Bralet MP, Le Naour F, Brunelle A, Laprevote O. In situ lipidomic analysis of nonalcoholic fatty liver by cluster TOF-SIMS imaging. Anal Chem. 2009;81:2823–31.

    Article  CAS  PubMed  Google Scholar 

  88. Nygren H, Börner K, Malmberg P, Tallarek E, Hagenhoff B. Imaging TOF-SIMS of rat kidney prepared by high-pressure freezing. Microsc Res Tech. 2005;68:329–34.

    Article  PubMed  Google Scholar 

  89. Magnusson Y, Friberg P, Sjövall P, Dangardt F, Malmberg P, Chen Y. Lipid imaging of human skeletal muscle using TOF-SIMS with bismuth cluster ion as a primary ion source. Physiol Funct Imaging. 2008;28:202–9.

    Article  CAS  Google Scholar 

  90. Touboul D, Roy S, Germain DP, Chaminade P, Brunelle A, Laprevote O. MALDI-TOF and cluster-TOF-SIMS imaging of Fabry disease biomarkers. Int J Mass Spectrom. 2007;260:158–65.

    Article  CAS  Google Scholar 

  91. McDonnell LA, Piersma SR, Altelaar AFM, Mize TH, Luxembourg SL, Verhaert PDEM, et al. Subcellular imaging mass spectrometry of brain tissue. J Mass Spectrom. 2005;40:160–8.

    Article  CAS  PubMed  Google Scholar 

  92. Delcourte A, Bertrand P. Interest of silver and gold metallization for molecular SIMS and SIMS imaging. Appl Surf Sci. 2004;231:250–5.

    Article  CAS  Google Scholar 

  93. Keune K, Boon JJ. Enhancement of the static SIMS secondary ion yields of lipid moieties by ultrathin gold coating of aged oil paint surfaces. Surf Interface Anal. 2004;36:1620–8.

    Article  CAS  Google Scholar 

  94. Delecorte A, Bour J, Aubriet F, Muller JF, Bertrand P. Sample metallization for performance improvement in desorption/ionization of kilodalton molecules: quantitative evaluation, imaging secondary ion MS, and laser ablation. Anal Chem. 2003;75:6875–85.

    Article  CAS  Google Scholar 

  95. Piehowski PD, Carado AJ, Kurczy ME, Ostrowski SG, Heien ML, Winograd N, et al. MS/MS methodology to improve subcellular mapping of cholesterol using TOF-SIMS. Anal Chem. 2008;80:8662–7.

    Article  CAS  PubMed  Google Scholar 

  96. Schueler B. Microscope imaging by time-of-flight secondary ion mass spectrometry. Microsc Microanal Microstruct. 1992;3:119–39.

    Article  Google Scholar 

  97. Luxembourg SL, Mize TH, McDonnell LA, Heeren RMA. High-spatial resolution mass spectrometric imaging of peptide and protein distributions on a surface. Anal Chem. 2004;76:5339–44.

    Article  CAS  PubMed  Google Scholar 

  98. Vaalburg W. Preclinical pharmacokinetic PET studies with radiolabeled potential new drugs in man. Drug Inf J. 1997;31:1015–8.

    Google Scholar 

  99. Rao J, Dragulescu A, Yao H. Fluorescence imaging in vivo: recent advances. Curr Opin Biotechnol. 2007;18(1):17–25.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric G. Solon.

Additional information

Guest Editor: Murali Ramanathan

This paper presents an overview of these techniques, history, study designs, and considerations for use in support of drug discovery and development.

An erratum to this article can be found at http://dx.doi.org/10.1208/s12248-009-9167-3

Rights and permissions

Reprints and permissions

About this article

Cite this article

Solon, E.G., Schweitzer, A., Stoeckli, M. et al. Autoradiography, MALDI-MS, and SIMS-MS Imaging in Pharmaceutical Discovery and Development. AAPS J 12, 11–26 (2010). https://doi.org/10.1208/s12248-009-9158-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-009-9158-4

Key words

Navigation