Skip to main content
Log in

Diazepam-Loaded Solid Lipid Nanoparticles: Design and Characterization

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The aim of the present study was to investigate the feasibility of the inclusion of a water-insoluble drug (diazepam, DZ) into solid lipid nanoparticles (SLNs), which offer combined advantages of rapid onset and prolonged release of the drug. This work also describes a new approach to prepare suppositories containing DZ-loaded SLN dispersions, as potential drug carrier for the rectal route. Modified high-shear homogenization and ultrasound techniques were employed to prepare SLNs. The effect of incorporation of different concentrations of Compritol® ATO 888 or Imwitor® 900K and Poloxamer 188 or Tween 80 was investigated. Results showed that varying the type or concentration of lipid matrix or surfactant had a noticeable influence on the entrapment efficiencies, particle size, and release profiles of prepared SLNs. Differential scanning calorimetry and X-ray diffraction measurements showed that the majority of SLNs possessed less ordered arrangements of crystals than the corresponding bulk lipids, which was favorable for increasing the drug loading capacity. Transmission electron microscopy and laser diffractometry studies revealed that the prepared nanoparticles were round and homogeneous and 60% of the formulations were less than 500 nm. Additionally, SLN formulations showed significant (P < 0.05) prolonged release than DZ solution. The subsequent step encompassed the preparation and evaluation of SLN-based suppositories utilizing SLN formulations that illustrated optimal release profiles. The in vitro release of DZ from the suppositories prepared using DZ-loaded SLN dispersions (equivalent to 2 mg DZ) was significantly (P < 0.05) extended compared to suppositories containing 2 mg DZ free drug.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. B. Alldredge, A. Gelb, S. Isaacs, M. Corry, F. Allen, S. Ulrich, M. Gottwald, N. O’Neil, J. Neuhaus, M. Segal, and D. Lowenstein. A comparison of lorazepam, DZ, and placebo for the treatment of out-of-hospital status epilepticus. N. Engl. J. Med. 345:631–637 (2001).

    Article  PubMed  CAS  Google Scholar 

  2. C. O’Dell. What do we tell parents of a child with simple or complex febrile seizures? In T. Z. Baram, and S. Shinnar (eds.), Febrile seizures, Academic, San Diego, 2002, pp. 305–316.

    Chapter  Google Scholar 

  3. C. O’Dell, S. Shinnar, K. Ballaban-Gil, M. Hornick, M. Sigalova, H. Kang, and S. Moshé. Rectal DZ gel in the home management of seizures in children. Pediatr. Neurol. 33:166–172 (2005).

    Article  PubMed  Google Scholar 

  4. J. O. McNamara. Drugs effective in the therapy of the epilepsies. In A. G. Gilman (ed.), The pharmacological basis of therapeutics, McGraw Hill, New York, 1996, pp. 478–485.

    Google Scholar 

  5. L. Li, I. Nandi, and K. Kim. Development of an ethyl laurate-based microemulsion for rapid-onset intranasal delivery of DZ. Int. J. Pharm. 237:77–85 (2002).

    Article  PubMed  CAS  Google Scholar 

  6. R. Kriel, J. Cloyd, J. Pellock, W. Mitchell, J. Cereghino, and N. Rosman. Rectal DZ gel for treatment of acute repetitive seizures. Pediatr. Neurol. 20:282–288 (1999).

    Article  PubMed  CAS  Google Scholar 

  7. M. Carceles, A. Ribó, R. Dávalos, T. Martinez, and J. Hernández. Effect of DZ on adenosine 3, 5-cyclic monophosphate (cAMP) plasma levels in anesthetized patients. Clin. Ther. 26:737–743 (2004).

    Article  PubMed  CAS  Google Scholar 

  8. R. H. Müller, K. Mader, and S. Gohla. Solid lipid nanoparticles (SLN) for controlled drug delivery—a review of the state of the art. Eur. J. Pharm. Biopharm. 50:161–177 (2000).

    Article  PubMed  Google Scholar 

  9. W. Mehnert, and K. Mader. Solid lipid nanoparticles: production, characterization and applications. Adv. Drug. Deliv. Rev. 472–3:165–196 (2001).

    Article  PubMed  CAS  Google Scholar 

  10. K. Parfitt. Martindale, the complete drug reference, 32rd ed., Pharmaceutical Press, London, 1999, pp. 661–668.

    Google Scholar 

  11. A. MacDonald, A. Michaelis, and B. Senkowski. Analytical profiles of drug substances and excipients, 1:Academic, San Diego, 1972, pp. 79–99.

    Google Scholar 

  12. M. Sznitowska, M. Gajewska, S. Janicki, A. Radwanska, and G. Lukowski. Bioavailability of DZ from aqueous-organic solution, submicron emulsion and solid lipid nanoparticles after rectal administration in rabbits. Eur. J. Pharm. Biopharm. 52:159–163 (2001).

    Article  PubMed  CAS  Google Scholar 

  13. J. Cloyd, R. Lalonde, T. Beniak, and G. Novack. A single blind, crossover comparison of the pharmacokinetics and cognitive effects of a new rectal DZ gel with intravenous DZ. Epilepsia. 39:520–526 (1998).

    Article  PubMed  CAS  Google Scholar 

  14. D. Hou, C. Xie, K. Huang, and C. Zhu. The production and characteristics of solid lipid nanoparticles (SLNs). Biomaterials. 24:1781–1785 (2003).

    Article  PubMed  CAS  Google Scholar 

  15. E. B. Souto, S. A. Wissing, C. M. Barbosa, and R. H. Müller. Development of a controlled release formulation based on SLN and NLC for topical clotrimazole delivery. Int. J. Pharm. 278:71–77 (2004).

    Article  PubMed  CAS  Google Scholar 

  16. L. H. Reddy, and R. S. Murthy. Etoposide-loaded nanoparticles made from glyceride lipids: formulation, characterization, in vitro drug release, and stability evaluation. AAPS PharmSciTech. 6:(2):Article 24 (2005).

    Google Scholar 

  17. B. Kim, K. Na, and H. Choi. Preparation and characterization of solid lipid nanoparticles (SLN) made of cacao butter and curdlan. Eur. J. Pharm. Sci. 24:199–205 (2005).

    Article  PubMed  CAS  Google Scholar 

  18. A. zur Muhlen, C. Schwarz, and W. Mehnert. Solid lipid nanoparticles (SLN) for controlled drug delivery–drug release and release mechanism. Eur. J. Pharm. Biopharm. 452:149–155 (1998).

    Article  PubMed  CAS  Google Scholar 

  19. S. A. Wissing, O. Kayser, and R. H. Müller. Solid lipid nanoparticles for parenteral drug delivery. Adv. Drug. Deliv. Rev. 56:1257–1272 (2004).

    Article  PubMed  CAS  Google Scholar 

  20. K. Manjunath, and V. Venkateswarlu. Pharmacokinetics, tissue distribution and bioavailability of clozapine solid lipid nanoparticles after intravenous and intraduodenal administration. J. Control. Rel. 107:215–228 (2005).

    Article  CAS  Google Scholar 

  21. O. N. El-Gazayerly, and A. H. Hikal. Preparation and evaluation of acetazolamide liposomes as an ocular delivery system. Int. J. Pharm. 158:121–127 (1997).

    Article  CAS  Google Scholar 

  22. G. N. Devaraj, S. R. Parakh, R. Devraj, S. S. Apte, B. R. Rao, and D. Rambhau. Release studies on niosomes containing fatty alcohols as bilayer stabilizers instead of cholesterol. J. Colloid. Interface Sci. 251:360–365 (2002).

    Article  PubMed  CAS  Google Scholar 

  23. Y. Luo, D. Chen, L. Ren, X. Zhao, and J. Qin. Solid lipid nanoparticles for enhancing vinpocetine’s oral bioavailability. J. Control. Release. 114:53–59 (2006).

    Article  PubMed  CAS  Google Scholar 

  24. J. Hanaee, Y. Javadzadeh, S. Taftachi, D. Farid, and A. Nokhodchi. The role of various surfactants on the release of salbutamol from suppositories. IL FARMACO. 59:903–906 (2004).

    Article  PubMed  CAS  Google Scholar 

  25. K. Westesen. Particles with modified physico-chemical properties, their preparation and uses, US Patent 6, 197, 349 (2001).

    Google Scholar 

  26. Y. Li, L. Dong, A. Jia, X. Chang, and H. Xue. Preparation and characterization of solid lipid nanoparticles loaded traditional Chinese medicine. Int. J. Biol. Macromol. 38:296–299 (2006).

    Article  PubMed  CAS  Google Scholar 

  27. V. Venkateswarlu, and K. Manjunath. Preparation, characterization and in vitro release kinetics of clozapine solid lipid nanoparticles. J. Control. Release. 95:627–638 (2004).

    Article  PubMed  CAS  Google Scholar 

  28. M. A. Casadei, F. Cerreto, S. Cesa, M. Giannuzzo, M. Feeney, C. Marianecci, and P. Paolicelli. Solid lipid nanoparticles incorporated in dextran hydrogels: a new drug delivery system for oral formulations. Int. J. Pharm. 325:140–146 (2006).

    Article  PubMed  CAS  Google Scholar 

  29. D. Quintanar-Guerrero, D. Tamayo-Esquivel, A. Ganem-Quintanar, E. Allémanna, and E. Doelker. Adaptation and optimization of the emulsification–diffusion technique to prepare lipidic nanospheres. Eur. J. Pharm. Sci. 26:211–218 (2005).

    Article  PubMed  CAS  Google Scholar 

  30. V. Jenning, A. F. Thunemann, and S. H. Gohla. Characterization of a novel solid lipid nanoparticle carrier system based on binary mixtures of liquid and solid lipids. Int. J. Pharm. 199:167–177 (2000).

    Article  PubMed  CAS  Google Scholar 

  31. A. zur Muhlen, and W. Mehnert. Drug release mechanism of prednisolone loaded solid lipid nanoparticles. Pharmazie. 53:552–555 (1998).

    Google Scholar 

  32. C. Schwarz, W. Mehnert, and R. H. Müller. Influence of production parameters of solid lipid nanoparticles (SLN) on the suitability for intravenous injection. Eur. J. Pharm. Biopharm. 40:24S (1994).

    Google Scholar 

  33. S. Lim, and C. Kim. Formulation parameters determining the physicochemical characteristics of solid lipid nanoparticles loaded with all-trans retinoic acid. Int. J. Pharm. 243:135–146 (2002).

    Article  PubMed  CAS  Google Scholar 

  34. R. C. Rowe, P. J. Sheskey, and P. J. Weller. Handbook of pharmaceutical excipients, 4th ed., American Pharmaceutical Association, Pharmaceutical Press, London, 2003.

    Google Scholar 

  35. H. Bunjes, K. Westesen, and M. H. J. Koch. Crystallization tendency and polymorphic transitions in triglyceride nanoparticles. Int. J. Pharm. 129:159–173 (1996).

    Article  CAS  Google Scholar 

  36. R. Cavalli, O. Caputo, M. Carlotti, M. Trotta, C. Scarnecchia, and M. R. Gasco. Sterilization and freeze-drying of drug-free and drug-loaded solid lipid nanoparticles. Int. J. Pharm. 148:47–54 (1997).

    Article  CAS  Google Scholar 

  37. P. Chattopadhyay, B. Y. Shekunov, D. Yimb, D. Cipolla, B. Boyd, and S. Farr. Production of solid lipid nanoparticle suspensions using supercritical fluid extraction of emulsions (SFEE) for pulmonary delivery using the AERx system. Adv. Drug. Deliv. Rev. 59:444–453 (2007).

    Article  PubMed  CAS  Google Scholar 

  38. M. Gibaldi, and S. Feldman. Mechanisms of surfactant effects on drug absorption. J. Pharm. Sci. 59:579–589 (1970).

    Article  PubMed  CAS  Google Scholar 

  39. M. Rieger. Surfactants. In H. Lieberman, M. Rieger, and G. Banker (eds.), Pharmaceutical dosage forms: disperse systems, 1:Marcel Dekker, New York, 1988, pp. 285–366.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghada Abdelbary.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdelbary, G., Fahmy, R.H. Diazepam-Loaded Solid Lipid Nanoparticles: Design and Characterization. AAPS PharmSciTech 10, 211–219 (2009). https://doi.org/10.1208/s12249-009-9197-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-009-9197-2

Key words

Navigation