Skip to main content
Log in

Silica Colloidal Crystals as Emerging Materials for High-Throughput Protein Electrophoresis

  • Research Article
  • Theme: Aggregation and Interactions of Therapeutic Proteins
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Silica colloidal crystals are a new type of media for protein electrophoresis, and they are assessed for their promise in rapidly measuring aggregation of monoclonal antibodies. The nature of silica colloidal crystals is described in the context of the need for a high-throughput separation tool for optimizing the formulations of protein drugs for minimal aggregation. The fundamental relations between molecular weight and mobility in electrophoresis are used to make a theoretical comparison of selectivity between gels and colloidal crystals. The results show that the selectivity is similar for these media, but slightly higher, 10%, for gels, and the velocity is inherently lower than that for gels due to the smaller free volume fraction. These factors are more than compensated for by lower broadening in colloidal crystals. These new media give plate heights of only 0.15 μm for the antibody monomer and 0.42 μm for the antibody dimer. The monoclonal antibody is separated from its dimer in 72 s over a distance of only 6.5 mm. This is five times faster than size-exclusion chromatography, with more than tenfold miniaturization, and amenable to parallel separations, all of which are promising for the design of high-throughput devices for optimizing protein drug formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. An Z. Therapeutic monoclonal antibodies from bench to clinic. Hoboken: Wiley; 2009.

    Book  Google Scholar 

  2. Dovichi NJ, Zhang JZ. How capillary electrophoresis sequenced the human genome. Angew Chem-Int Edit. 2000;39(24):4463–8.

    Article  CAS  Google Scholar 

  3. Jorgenson JW, Lukacs KD. Zone electrophoresis in open-tubular glass-capillaries. Anal Chem. 1981;53(8):1298–302.

    Article  CAS  Google Scholar 

  4. Gomis DBL, Junco S, Exposito Y, Gutierrez D. Size-based separations of proteins by capillary electrophoresis using linear polyacrylamide as a sieving medium: model studies and analysis of cider proteins. Electrophoresis. 2003;24(9):1391–6.

    Article  PubMed  CAS  Google Scholar 

  5. Guttman A, Nolan J. Comparison of the separation of proteins by sodium dodecyl-sulfate slab gel-electrophoresis and capillary sodium dodecyl-sulfate gel-electrophoresis. Anal Biochem. 1994;221(2):285–9.

    Article  PubMed  CAS  Google Scholar 

  6. Zhu ZF, Lu JJ, Liu SR. Protein separation by capillary gel electrophoresis: a review. Anal Chim Acta. 2012;709:21–31.

    Article  PubMed  CAS  Google Scholar 

  7. Colvin VL. From opals to optics: colloidal photonic crystals. MRS Bull. 2001;26(8):637–41.

    Article  CAS  Google Scholar 

  8. Stober W, Fink A, Bohn E. Controlled growth of monodisperse silica spheres in micron size range. J Colloid Interface Sci. 1968;26(1):62–9.

    Article  Google Scholar 

  9. Jiang P, Bertone JF, Hwang KS, Colvin VL. Single-crystal colloidal multilayers of controlled thickness. Chem Mat. 1999;11(8):2132–40.

    Article  CAS  Google Scholar 

  10. Miguez H, Meseguer F, Lopez C, Mifsud A, Moya JS, Vazquez L. Evidence of FCC crystallization of SiO2 nanospheres. Langmuir. 1997;13(23):6009–11.

    Article  CAS  Google Scholar 

  11. Pusey PN, Vanmegen W, Bartlett P, Ackerson BJ, Rarity JG, Underwood SM. Structure of crystals of hard colloidal spheres. Phys Rev Lett. 1989;63(25):2753–6.

    Article  PubMed  CAS  Google Scholar 

  12. Zeng Y, Harrison DJ. Self-assembled colloidal arrays as three-dimensional nanofluidic sieves for separation of biomolecules on microchips. Anal Chem. 2007;79(6):2289–95.

    Article  PubMed  CAS  Google Scholar 

  13. Zeng Y, He M, Harrison DJ. Microfluidic self-patterning of large-scale crystalline nanoarrays for high-throughput continuous DNA fractionation. Angew Chem-Int Edit. 2008;47(34):6388–91.

    Article  CAS  Google Scholar 

  14. Birdsall RE, Koshel BM, Hua Y, Ratnayaka SN, Wirth MJ. Modeling of protein electrophoresis in silica colloidal crystals having brush layers of polyacrylamide. Electrophoresis. 2013. doi:10.1002/elps.201200413.

    PubMed  Google Scholar 

  15. Jiang P, Prasad T, McFarland MJ, Colvin VL. Two-dimensional nonclose-packed colloidal crystals formed by spincoating. Appl Phys Lett. 2006;89(1).

  16. Wei BC, Rogers BJ, Wirth MJ. Slip flow in colloidal crystals for ultraefficient chromatography. J Am Chem Soc. 2012;134(26):10780–2.

    Article  PubMed  CAS  Google Scholar 

  17. Kamp U, Kitaev V, von Freymann G, Ozin GA, Mabury SA. Colloidal crystal capillary columns—towards optical chromatography. Adv Mater. 2005;17(4):438–43.

    Article  CAS  Google Scholar 

  18. Malkin DS, Wei BC, Fogiel AJ, Staats SL, Wirth MJ. Submicrometer plate heights for capillaries packed with silica colloidal crystals. Anal Chem. 2010;82(6):2175–7.

    Article  PubMed  CAS  Google Scholar 

  19. Moon JH, Kim S, Yi GR, Lee YH, Yang SM. Fabrication of ordered macroporous cylinders by colloidal templating in microcapillaries. Langmuir. 2004;20(5):2033–5.

    Article  CAS  Google Scholar 

  20. Wei B, Malkin DS, Wirth MJ. Plate heights below 50 nm for protein electrochromatography using silica colloidal crystals. Anal Chem. 2010;82(24):10216–21.

    Article  PubMed  CAS  Google Scholar 

  21. Egas DA, Wirth MJ. Fundamentals of protein separations: 50 years of nanotechnology, and growing. Annu Rev Anal Chem. 2008;1:833–55.

    Article  CAS  Google Scholar 

  22. Pal S, Fauchet PM, Miller BL. 1-D and 2-D photonic crystals as optical methods for amplifying biomolecular recognition. Anal Chem. 2012;84(21):8900–8.

    PubMed  CAS  Google Scholar 

  23. Huang X, Wirth M. Surface-initiated radical polymerization on porous silica. Anal Chem. 1997;69:4577–80.

    Article  CAS  Google Scholar 

  24. Papautsky I, Mohanty S, Weiss R, Frazier AB. High lane density slab-gel electrophoresis using micromachined instrumentation. Electrophoresis. 2001;22(18):3908–15.

    Article  PubMed  CAS  Google Scholar 

  25. Kopecka K, Drounin G, Slater G. Capillary electrophoresis sequencing of small ssDNA molecules versus Ogston regime: fitting data and interpreting parameters. Electrophoresis. 2004;25:2177–85.

    Article  PubMed  CAS  Google Scholar 

  26. Mahler HC, Friess W, Grauschopf U, Kiese S. Protein aggregation: pathways, induction factors and analysis. J Pharm Sci. 2009;98(9):2909–34.

    Article  PubMed  CAS  Google Scholar 

  27. Slavickova A. Electrophoresis of nonreduced IgM and IgG monoclonal-antibodies on mixed agarose-polyacrylamide gels. Electrophoresis. 1990;11(10):892.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Eli Lilly, Inc. (NNJ) and by NIH under grant R21CA161772 (REB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary J. Wirth.

Additional information

Guest Editor: Craig Svensson

Rights and permissions

Reprints and permissions

About this article

Cite this article

Njoya, N.K., Birdsall, R.E. & Wirth, M.J. Silica Colloidal Crystals as Emerging Materials for High-Throughput Protein Electrophoresis. AAPS J 15, 962–969 (2013). https://doi.org/10.1208/s12248-013-9506-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-013-9506-2

Key words

Navigation