Skip to main content
Log in

Stabilized dynorphin derivatives for modulating antinociceptive activity in morphine tolerant rats: Effect of different routes of administration

  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Dynorphins, such as dynorphin A(1–13) (Dyn A(1–13)), have been shown to enhance analgesia in morphine-tolerant animals, despite their very short half-life after intravenous administration. The potential use of dynorphins in humans is therefore of interest. This laboratory has recently evaluated the metabolic fate of stabilized dynorphin derivatives. This study was conducted to evaluate whether such stabilized derivatives, ie, [N-Met-Tyr1]-Dynorphin A(1–13) (N-MT Dyn A, stabilized at the N-terminal end) and [N-Met-Tyr1]-Dynorphin A(1–13) amide (N-MT Dyn A amide, stabilized at the C-and N-terminal ends), would enhance the antinociceptive activity of morphine not only after intravenous administration but also after subcutaneous and pulmonary delivery. Intravenous administration of N-MT Dyn A (5 μmol/kg) and N-MT Dyn A amide (5 μmol/kg) to morphine-tolerant rats resulted in significantly higher tail-flick latencies than those observed for the saline group. These effects could be observed for up to 2.0±0.1 hours after intravenous administration of N-MT Dyn A and for up to 3.4±1.4 hours for N-MT Dyn A amide. The time-averaged effects of both peptides were similar. After pulmonary delivery of the same dose, derivatives remained active. The duration of the effects after pulmonary administration of the amide was 4.4±2.5 hours while that of N-MT Dyn A was slightly shorter (2.8±0.9 hours). No effect was observed after subcutaneous administration of N-MT Dyn A. These results suggest that pulmonary delivery of stabilized dynorphin derivatives represents a possible alternative to intravenous administration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Goldstein A, Tachibana S, Lowney S, Hunkapiller M, Hood L. Dynorphin-(1–13), an extraordinarily potent opioid peptide.Proc Natl Acad Sci USA. 1979;76:6666–6670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Friedman HJ, Jen M-F, Chang JK, Lee NM, Loh HH. Dynorphin: a possible modulatory peptide on morphine or b-endorphin analgesia in mouse.Eur J Pharmacol. 1981;69:357–360.

    Article  CAS  PubMed  Google Scholar 

  3. Walker JM, Katz RJ, Akil H. Behavioral effects of dynorphin1–13 in the mouse and rat: initial observations.Peptides. 1980;1:341–345.

    Article  CAS  PubMed  Google Scholar 

  4. Pentel PR, Wananukul W, Hooke LP, et al. Effects of high intravenous doses of dynorphin A (1–13) on tail flick latency and central nervous system histology in rats.Pharmacol Biochem Behav. 1995;51:387–390.

    Article  CAS  PubMed  Google Scholar 

  5. Tulunay FC, Jen M-F, Chang J-K, Loh HH, Lee NM. Possible regulatory role of dynorphin on morphine- and b-endorphin-induced analgesia.J Pharmacol Exp Ther. 1981;219:296–298.

    CAS  PubMed  Google Scholar 

  6. Lee NM, Smith AP. Possible regulatory function of dynorphin and its clinical implications.Trends Pharmacol Sci. 1984;5:108–110.

    Article  CAS  Google Scholar 

  7. Green PG, Lee NM. Dynorphin A-(1–13) attenuates withdrawal in morphine-dependent rats: effect of route of administration.Eur J Pharmacol. 1988;145:267–272.

    Article  CAS  PubMed  Google Scholar 

  8. Takemori AE, Loh HH, Lee NM. Suppression by dynorphin A-(1–13) of the expression of opiate withdrawal and tolerance in mice.Eur J Pharmacol. 1992;221:223–226.

    Article  CAS  PubMed  Google Scholar 

  9. Hooke LP, He L, Lee NM. Dynorphin A modulates acute and chronic opioid effects.J Pharmacol Exp Ther. 1995;273:292–297.

    CAS  PubMed  Google Scholar 

  10. Aceto MD, Dewey WL, Chang JK, Lee NM. Dynorphin (1–13) effects in nontolerant and morphine-dependent rhesus monkeys.Eur J Pharmacol. 1982;83:139–142.

    Article  CAS  PubMed  Google Scholar 

  11. Wen HL, Ho WKK. Suppression of withdrawal symptoms by dynorphin in heroin addicts.Eur J Pharmacol. 1982;82:183–186.

    Article  CAS  PubMed  Google Scholar 

  12. Muller S, Hochhaus G. Metabolism of dynorphin, A 1–13 in human blood and plasma.Pharm Res. 1995;12:1165–1170.

    Article  CAS  PubMed  Google Scholar 

  13. Woo S, Garzon J, Sanchez-Blazquez P, Tulunay FC, Chang JK, Loh HH. Dynorphin (1–10)amide: a potent and selective analog of dynorphin(1–13).Life Sci. 1982;31:1817–1820.

    Article  CAS  PubMed  Google Scholar 

  14. Yoshino H, Nakazawa T, Arakawa Y, et al. Synthesis and structure-activity relationships of dynorphin A(1–8) amide.J Med Chem. 1990;33:206–212.

    Article  CAS  PubMed  Google Scholar 

  15. Yu J, Butelman RB, Woods JH, Chait BT, Kreek MJ. Dynorphin A(1–8) analog, E-2078, is stable in human and rhesus monkey blood.J Pharmacol Exp Ther. 1996;280:1147–1151.

    Google Scholar 

  16. Hooke LP, He L, Lee NM. [Des-Tyr1] Dynorphin A-(2–17) has naloxone-insensitive antinociceptive effect in the writhing assay.J Pharmacol Exp Ther. 1995;273:802–807.

    CAS  PubMed  Google Scholar 

  17. Al-Fayoumi S, Brugos B, Arya V, et al. Identification of stable dynorphin derivatives for suppressing tolerance in morphine dependent rats.Pharm Res. 2004; In press.

  18. Caudle RM, Isaac L. Intratechal dynorphin (1–13) results in irreversible loss of tail flick reflex in rats.Brain Res. 1987;435:1–6.

    Article  CAS  PubMed  Google Scholar 

  19. Laughlin TM, Larson AA, Wilcox GL. Mechanisms of induction of persistent nociception by dynorphin.J Pharmacol Exp Ther. 2001;299:6–11.

    CAS  PubMed  Google Scholar 

  20. D'Amour FE, Smith DCA. A method for determining loss of pain sensation.J Pharmacol Exp Ther. 1941;72:74–79.

    Google Scholar 

  21. Dewey WL, Harris LS. The tail-flick test. In: Neidle A, ed.Methods in Narcotics Research. New York: Marcel Dekker Inc; 1975:101–109.

    Google Scholar 

  22. Lohmann A, Smith F. Buprenorphine substitution ameliorates spontaneous withdrawal in fentanyl-dependent rat pups.Pediatr Res. 2001;49:50–55.

    Article  CAS  PubMed  Google Scholar 

  23. Harris LS, Pierson AK. Some narcotic antagonists in the benzomorphan series.J Pharmacol Exp Ther. 1964;143:141–148.

    CAS  PubMed  Google Scholar 

  24. Hochhaus G, Derendorf H. Dose optimization based on pharmacokinetic/pharmacodynamic modeling. In: Derendorf H, Hochhaus G, eds.Handbook of Pharmacokinetic/Pharmacodynamic Correlations. New York: CRC; 1995:79–120.

    Google Scholar 

  25. Gambus PL, Schnider TW, Minto CF, et al. Pharmacokinetics of intravenous dynorphin A(1–13) in opioid-naive and opioid-treated human volunteers.Clin Pharmacol Ther. 1998;64:27–38.

    Article  CAS  PubMed  Google Scholar 

  26. Agu RU, Ugwoke MI, Armand M, Kinget R, Verbeke N. The lung as a route for systemic delivery of therapeutic proteins and peptides.Respir Res. 2001;2:198–209.

    Article  CAS  PubMed  Google Scholar 

  27. Cefalu WT, Rosenstock J, Blindra S. Inhaled insulin: a novel route for insulin delivery.Expert. Opin. Drugs. 2002;11:687–691.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guenther Hochhaus.

Additional information

Published: December 28, 2004.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brugos, B., Arya, V. & Hochhaus, G. Stabilized dynorphin derivatives for modulating antinociceptive activity in morphine tolerant rats: Effect of different routes of administration. AAPS J 6, 36 (2004). https://doi.org/10.1208/aapsj060436

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/aapsj060436

Keywords

Navigation