Journal of Agricultural, Biological, and Environmental Statistics

, 13:60

First online:

Bayesian multivariate process modeling for prediction of forest attributes

  • Andrew O. FinleyAffiliated withDepartment of Forestry and Department of Geography, Michigan State University Email author 
  • , Sudipto BanerjeeAffiliated withDivision of Biostatistics, School of Public Health, University of Minnesota
  • , Alan R. EkAffiliated withDepartment of Forest Resources, University of Minnesota
  • , Ronald E. McRobertsAffiliated withNorth Central Research Station, USDA Forest Service

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


This article investigates multivariate spatial process models suitable for predicting multiple forest attributes using a multisource forest inventory approach. Such data settings involve several spatially dependent response variables arising in each location. Not only does each variable vary across space, they are likely to be correlated among themselves. Traditional approaches have attempted to model such data using simplifying assumptions, such as a common rate of decay in the spatial correlation or simplified cross-covariance structures among the response variables. Our current focus is to produce spatially explicit, tree species specific, prediction of forest biomass per hectare over a region of interest. Modeling such associations presents challenges in terms of validity of probability distributions as well as issues concerning identifiability and estimability of parameters. Our template encompasses several models with different correlation structures. These models represent different hypotheses whose tenability are assessed using formal model comparisons. We adopt a Bayesian hierarchical approach offering a sampling-based inferential framework using efficient Markov chain Monte Carlo methods for estimating model parameters.

Key Words

Bayesian inference Coregionalization Forest inventory Markov chain Monte Carlo Multivariate spatial process