Besag, J., Green, P., Higdon, P. J., and Mengersen, K. (1995), “Bayesian Computation and Stochastic Systems” (with discussion),

*Statistical Science*, 10, 3–66.

MATHCrossRefMathSciNetBest, N., Cowles, M. K., and Vines, K. (1995), *CODA Convergence Diagnosis and Output Software for Gibbs Sampling Output Version 0.30*, Cambridge, MA: MRC Biostatistics Unit.

Carlin, B. P., and Chib, S. (1995), “Bayesian Model Choice via Markov Chain Monte Carlo Methods,”

*Journal of the Royal Statistical Society*, Ser. B, 57, 473–484.

MATHCarlin, B. P., and Louis, T. A. (2000),

*Bayes and Empirical Bayes Methods for Data Analysis* (2nd ed.), London: Chapman and Hall/CRC Press.

MATHCeleux, G., Hurn, M., and Robert, C. (2000), “Computational and Inferential Difficulties With Mixture Posterior Distributions,”

*Journal of the American Statistical Association*, 95, 957–970.

MATHCrossRefMathSciNetCohen, A. C. (1991),

*Truncated and Censored Samples Theory and Applications*, New York: Marcel Dekker.

MATHContreras-Cristan, A., Gutierrez-Pena, E., and OReilly, F. (2003), “Inference Using Latent Variables for Mixtures of Distributions for Censored Data with Partial Identification,”

*Communications in Statistics—Theory and Methods*, 32, 749–774.

MATHCrossRefMathSciNetDarvasi, A., and Soller, M. (1992), “Selective Genotyping for Determination of Linkage Between a Marker Locus and a Quantitative Trait Locus,”

*Theoretical and Applied Genetics*, 85, 353–359.

CrossRefDavid, H. A. (1970),

*Order Statistics*, New York: Wiley.

MATHDempster, A. P., Laird, N. M., and Rubin, D. B. (1977), “Maximum Likelihood from Incomplete Data via the EM Algorithm” (with discussion),

*Journal of the Royal Statistical Society*, Ser. B, 39, 1–38.

MATHMathSciNetGelman, A., and Rubin, B. D. (1992), “Inference From Iterative Simulation Using Multiple Sequences,”

*Statistical Science*, 7, 457–511.

CrossRefGeman, S., and Geman, D. (1984), “Stochastic Relaxation, Gibbs Distributions and the Bayesian Restoration of Images,”

*IEEE Transactions on Pattern Analysis and Machine Intelligence*, 6, 721–741.

MATHCrossRefGeweke, J. (1992), “Evaluating the Accuracy of Sampling Based Approaches to Calculating Posterior Moments,” in *Bavesian Statistics 4*, eds. J. M. Bernado, J. O. Berger, A. P. David, and A. F. M. Smith, Cambridge, MA: Oxford University Press.

Gilks, W., Richardson, S., and Spiegelhalter, D. (1996),

*Markov Chain Monte Carlo in Practice*, London: Chapman Hall.

MATHGreen, P. J. (1995), “Reversible Jump Markov Chain Monte Carlo Computation and Bayesian Model Determination,”

*Biometrika*, 82, 711–732.

MATHCrossRefMathSciNetHastings, W. K. (1970), “Monte Carlo Sampling Methods Using Markov Chains and Their Applications,”

*Biometrika*, 57, 97–109.

MATHCrossRefHeath, S. C. (1997), “Markov Chain Monte Carlo Segregation and Linkage Analysis for Oligenic Models,”

*American Journal of Human Genetics*, 61, 748–760.

CrossRefHeidelberger, P., and Welch, P. (1983), “Simulation Run Length Control in the Presence of an Initial Transient,”

*Operations Research*, 31, 1109–1144.

MATHCrossRefHsiao, C. K. (1997), “Approximate Bayes Factors When a Mode Occurs on the Boundary,”

*Journal of the American Statistical Association*, 92, 656–663.

MATHCrossRefMathSciNetIhaka, R., and Gentleman, R. (1996), “R: A Language for Data Analysis and Graphics,”

*Journal of Computational and Graphical Statistics*, 5, 299–314.

CrossRefLander, E. S., and Botstein, D. (1989), “Mapping Mendelian Factors Underlying Quantitative Traits using RFLP Linkage Maps,” *Genetics*, 121, 185–199.

Lebowitz, R. J., Soller, M., and Beckmann, J. S. (1987), “Trait-Based Analyses for the Detection of Linkage Between Marker Loci and Quantitative Trait Loci in Crosses Between Inbred Lines,”

*Theoretical and Applied Genetics*, 73, 556–562.

CrossRefLee, S., Park, S. H., and Park, J. (2003), “The Proportional Hazards Regression With a Censored Covariate,”

*Statistics and Probability Letters*, 61, 309–319.

MATHCrossRefMathSciNetMcLachlan, G. J., and Jones, P. N. (1988), “Fitting Mixture Models to Grouped and Truncated Data via the EM Algorithm,”

*Biometrics*, 44, 571–578.

MATHCrossRefMcLaren, C. E., Wagstaff, M., Brittenham, G. M., and Jacobs, A. (1991), “Detection of Two-Component Mixtures of Lognormal Distributions in Grouped, Doubly Truncated Data: Analysis of Red Blood Cell Volume Distributions,”

*Biometrics* 47, 607–622.

CrossRefMengersen, K. L., and Robert, C. P. (1996), “Testing for Mixtures: A Bayesian, Entropic Approach,” in *Bavesian Statistics 5*, eds. J. M. Bernando, J. O. Berger, A. P. Dawid, A. F. M. Smith, Cambridge, MA: Oxford University Press, pp. 225–276.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E. (1953), “Equations of State Calculations by Fast Computing Machines,”

*Journal of Chemical Physics*, 21, 1087–1092.

CrossRefMuranty, H., and Goffinet, B. (1997), “Selective Genotyping for Location and Estimation of the Effect of a Quantitative Trait Locus,”

*Biometrics*, 53, 629–643.

MATHCrossRefOrd, K., and Bagchi, U. (1983), “The Truncated Normal-Gamma Mixture as a Distribution for Lead Time Demand,”

*Naval Research Logistics Quarterly*, 30, 359–365.

MATHCrossRefPack, S. E., and Morgan, B. J. T. (1990), “A Mixture Model for Interval-Censored Time-to-Response Quantal Assay Data,”

*Biometrics*, 46, 749–757.

CrossRefPayne, R. W., et al. (1993), *Genstat 5, Release 3 Reference Manual*, Oxford: Oxford University Press.

Pettitt, A. N. (1985), “Re-weighted Least Squares Estimation with Censored and Grouped Data: An Application of the EM Algorithm,”

*Journal of the Royal Statistical Society*, Ser. B. 47, 253–260.

MathSciNetRaftery, A. E. (1996), “Hypothesis Testing and Model Selection,” in *Markov Chain Monte Carlo in Practice*, eds. W. J. Gilks, S. Richardson, and D. J. Spiegelhalter London: Chapman and Hall, pp. 163–188.

Raftery, A. L., and Lewis, S. (1992), “How Many Iterations in the Gibbs Sampler?” in *Bayesian Statistics 4*, eds. J. M. Bernado, J. O. Berger, A. P. David, and A. F. M. Smith, Oxford: Oxford University Press, p. 763–774.

Richardson, S., and Green, P. J. (1997), “On Bayesian Analysis of Mixtures With an Unknown Number of Components,”

*Journal of the Royal Statistical Society*, Ser. B, 50, 731–792.

CrossRefMathSciNetRobert, C. (1996), “Mixtures of Distributions: Inference and Estimation,” in *Markov Chain Monte Carlo in Practice*, eds. W. Gilks, S. Richardson, and D. Spiegelhalter, London: Chapman and Hall.

Robert, C. P. (1994),

*The Bayesian Choice*, New York: Springer.

MATHRobert, C. P., and Casella, G. (1999),

*Monte Carlo Statistical Methods*, New York: Springer Verlag.

MATHSatagopan, J. M., Yandell, B. S., Newton, M. A., and Osborn, T. C. (1996), “A Bayesian Approach to Detect Quantitative Trait Loci using Markov Chain Monte Carlo,” *Genetics*, 144, 805–816.

Schneider, H. (1988), *Truncated and Censored Samples from Normal Populations*, New York: Marcel Dekker.

Sillanpää, M. J., and Arjas, E. (1998), “Bayesian Mapping of Multiple Quantitative Trait Loci from Incomplete Line Cross Data,” *Genetics*, 148, 1373–1388.

Smith, A. F. M., and Roberts, G. O. (1993), “Bayesian Computation via the Gibbs Sampler and Related Markov Monte Carlo Methods,”

*Journal of the Royal Statistical Society*, Ser. B, 55, 3–23.

MATHMathSciNetSmith, M. D., and Moffatt, P. G. (1999), “Fisher’s Information on the Correlation Coefficient in Bivariate Logistic Models,”

*Australian and New Zealand Journal of Statistics*, 41, 315–330.

MATHCrossRefMathSciNetSpiegelhalter, D., Thomas, A., Best, N., and Gilks, W. (1995), *BUGS. Bayesian inference Using Gibbs Sampling, Version 0.50*, Cambridge: MRC Biostatistics Unit.

Stephens, D. A., and Fisch, R. D. (1998), “Bayesian Analysis of Quantitative Trait Locus Data Using Reversible Jump Markov Chain Monte Carlo,”

*Biometrics*, 54, 1334–1347.

MATHCrossRefStephens, D. A., and Smith, A. F. M. (1993), “Bayesian Inference in Multipoint Gene Mapping,”

*Annals of Human Genetics*, 57, 65–82.

CrossRefStephens, M. (2000a), “Bayesian Analysis of Mixtures With an Unknown Number of Components—An Alternative to Reversible Jump Methods,”

*The Annals of Statistics*, 28, 40–74.

MATHCrossRefMathSciNet— (2000b), “Dealing With Label-Switching in Mixture Models,”

*Journal of the Royal Statistical Society*, Ser. B, 62, 795–809.

MATHCrossRefMathSciNetTanner, M. A. (1993),

*Tools for Statistical Inference* (2nd ed.), New York: Springer-Verlag.

MATHTanner, M. A., and Wong, W. H. (1987), “The Calculation of Posterior Distributions by Data Augmentation” (with discussion),

*Journal of the American Statistical Association*, 82, 528–550.

MATHCrossRefMathSciNetTweedie, R. L., and Mengersen, K. (1996), “Rates of Convergence of the Hastings and Metropolis Algorithms,”

*The Annals of Statistics*, 24, 101–121.

MATHCrossRefMathSciNetUimari, P., and Sillanpää, M. J. (2001), “Bayesian Oligogenic Analysis of Quantitative and Qualitative Traits in General Pedigrees,”

*Genetic Epidemiology*, 21, 224–242.

CrossRefVogl, C., and Xu, S. (2002), “Qtl Analysis in Arbitrary Pedigrees with Incomplete Marker Information,”

*Heredity*, 89, 339–345.

CrossRefWang, Q. H., and Li, G. (2002), “Empirical Likelihood Semiparametric Regression Analysis Under Random Censorship,”

*Journal of Multivariate Analysis*, 83, 469–486.

MATHCrossRefMathSciNetYi, N. J., and Xu, S. Z. (2002), “Linkage Analysis of Quantitative Trait Loci in Multiple Line Crosses,”

*Genetica*, 114, 217–230.

CrossRef