Skip to main content

Advertisement

Log in

From isolation to implantation: a concise review of mesenchymal stem cell therapy in bone fracture repair

  • Review
  • Published:
Stem Cell Research & Therapy Aims and scope Submit manuscript

Abstract

Compromised bone-regenerating capability following a long bone fracture is often the result of reduced host bone marrow (BM) progenitor cell numbers and efficacy. Without surgical intervention, these malunions result in mobility restrictions, deformities, and disability. The clinical application of BM-derived mesenchymal stem cells (MSCs) is a feasible, minimally invasive therapeutic option to treat non-union fractures. This review focuses on novel, newly identified cell surface markers in both the mouse and human enabling the isolation and purification of osteogenic progenitor cells as well as their direct and indirect contributions to fracture repair upon administration. Furthermore, clinical success to date is summarized with commentary on autologous versus allogeneic cell sources and the methodology of cell administration. Given our clinical success to date in combination with recent advances in the identification, isolation, and mechanism of action of MSCs, there is a significant opportunity to develop improved technologies for defining therapeutic MSCs and potential to critically inform future clinical strategies for MSC-based bone regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BM:

Bone marrow

BMP:

Bone morphogenetic protein

CAR:

Chimeric antigen receptor

DBM:

Demineralized bone matrix

DTR:

Diptheria toxin receptor

eGFP:

Enhanced green fluorescent protein

EO:

Endochondral ossification

FAP:

Fibroblast activation protein alpha

HA:

Hydroxyapatite

HME:

Hematopoietic microenvironment

HSC:

Hematopoietic stem cell

IL:

Interleukin

MSC:

Mesenchymal stem cell

Mx1:

Myxovirus resistance-1

PDGFRα:

Platelet-derived growth factor receptor alpha

Sca:

Stem cell antigen

SDF-1:

Stromal cell-derived factor-1

TNF-α:

Tumor necrosis factor-alpha.

References

  1. Mathieu M, Rigutto S, Ingels A, Spruyt D, Stricwant N, Kharroubi I, Albarani V, Jayankura M, Rasschaert J, Bastianelli E, Gangji V: Decreased pool of mesenchymal stem cells is associated with altered chemokines serum levels in atrophic nonunion fractures. Bone. 2013, 53: 391-398. 10.1016/j.bone.2013.01.005.

    Article  CAS  PubMed  Google Scholar 

  2. Ren G, Chen X, Dong F, Li W, Ren X, Zhang Y, Shi Y: Concise review: mesenchymal stem cells and translational medicine: emerging issues. Stem Cells Transl Med. 2012, 1: 51-58. 10.5966/sctm.2011-0019.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Kumar S, Wan C, Ramaswamy G, Clemens TL, Ponnazhagan S: Mesenchymal stem cells expressing osteogenic and angiogenic factors synergistically enhance bone formation in a mouse model of segmental bone defect. Mol Ther. 2010, 18: 1026-1034. 10.1038/mt.2009.315.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Pereira RF, O’Hara MD, Laptev AV, Halford KW, Pollard MD, Class R, Simon D, Livezey K, Prockop DJ: Marrow stromal cells as a source of progenitor cells for nonhematopoietic tissues in transgenic mice with a phenotype of osteogenesis imperfecta. Proc Natl Acad Sci U S A. 1998, 95: 1142-1147. 10.1073/pnas.95.3.1142.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Bruder SP, Kraus KH, Goldberg VM, Kadiyala S: The effect of implants loaded with autologous mesenchymal stem cells on the healing of canine segmental bone defects. J Bone Joint Surg Am. 1998, 80: 985-996.

    CAS  PubMed  Google Scholar 

  6. Petite H, Viateau V, Bensaïd W, Meunier A, de Pollak C, Bourguignon M, Oudina K, Sedel L, Guillemin G: Tissue-engineered bone regeneration. Nat Biotechnol. 2000, 18: 959-963. 10.1038/79449.

    Article  CAS  PubMed  Google Scholar 

  7. Breitbart EA, Meade S, Azad V, Yeh S, Al-Zube L, Lee YS, Benevenia J, Arinzeh TL, Lin SS: Mesenchymal stem cells accelerate bone allograft incorporation in the presence of diabetes mellitus. J Orthop Res. 2010, 28: 942-949.

    PubMed  Google Scholar 

  8. Bulman SE, Barron V, Coleman CM, Barry F: Enhancing the mesenchymal stem cell therapeutic response: cell localization and support for cartilage repair. Tissue Eng Part B Rev. 2013, 19: 58-68. 10.1089/ten.teb.2012.0101.

    Article  CAS  PubMed  Google Scholar 

  9. Berner A, Reichert JC, Woodruff MA, Saifzadeh S, Morris AJ, Epari DR, Nerlich M, Schuetz MA, Hutmacher DW: Autologous vs. allogenic mesenchymal progenitor cells for the reconstruction of critical sized segmental tibial bone defects in aged sheep. Acta Biomater. 2013, 9: 7874-7884. 10.1016/j.actbio.2013.04.035.

    Article  CAS  PubMed  Google Scholar 

  10. Bensaïd W, Oudina K, Viateau V, Potier E, Bousson V, Blanchat C, Sedel L, Guillemin G, Petite H: De novo reconstruction of functional bone by tissue engineering in the metatarsal sheep model. Tissue Eng. 2005, 11: 814-824. 10.1089/ten.2005.11.814.

    Article  PubMed  Google Scholar 

  11. Cipitria A, Reichert JC, Epari DR, Saifzadeh S, Berner A, Schell H, Mehta M, Schuetz MA, Duda GN, Hutmacher DW: Polycaprolactone scaffold and reduced rhBMP-7 dose for the regeneration of critical-sized defects in sheep tibiae. Biomaterials. 2013, 34: 9960-9968. 10.1016/j.biomaterials.2013.09.011.

    Article  CAS  PubMed  Google Scholar 

  12. Friedenstein AJ, Chailakhyan RK, Latsinik NV, Panasyuk AF, Keiliss-Borok IV: Stromal cells responsible for transferring the microenvironment of the hemopoietic tissues, Cloning in vitro and retransplantation in vivo. Transplantation. 1974, 17: 331-340. 10.1097/00007890-197404000-00001.

    Article  CAS  PubMed  Google Scholar 

  13. Horwitz EM, Dominici M: How do mesenchymal stromal cells exert their therapeutic benefit?. Cytotherapy. 2008, 10: 771-774. 10.1080/14653240802618085.

    Article  CAS  PubMed  Google Scholar 

  14. Sacchetti B, Funari A, Michienzi S, Di Cesare S, Piersanti S, Saggio I, Tagliafico E, Ferrari S, Robey PG, Riminucci M, Bianco P: Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell. 2007, 131: 324-336. 10.1016/j.cell.2007.08.025.

    Article  CAS  PubMed  Google Scholar 

  15. Morikawa S, Mabuchi Y, Kubota Y, Nagai Y, Niibe K, Hiratsu E, Suzuki S, Miyauchi-Hara C, Nagoshi N, Sunabori T, Shimmura S, Miyawaki A, Nakagawa T, Suda T, Okano H, Matsuzaki Y: Prospective identification, isolation, and systemic transplantation of multipotent mesenchymal stem cells in murine bone marrow. J Exp Med. 2009, 206: 2483-2496. 10.1084/jem.20091046.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Omatsu Y, Sugiyama T, Kohara H, Kondoh G, Fujii N, Kohno K, Nagasawa T: The essential functions of adipo-osteogenic progenitors as the hematopoietic stem and progenitor cell niche. Immunity. 2010, 33: 387-399. 10.1016/j.immuni.2010.08.017.

    Article  CAS  PubMed  Google Scholar 

  17. Méndez-Ferrer S, Michurina TV, Ferraro F, Mazloom AR, Macarthur BD, Lira SA, Scadden DT, Ma’ayan A, Enikolopov GN, Frenette PS: Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature. 2010, 466: 829-834. 10.1038/nature09262.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Greenbaum A, Hsu YM, Day RB, Schuettpelz LG, Christopher MJ, Borgerding JN, Nagasawa T, Link DC: CXCL12 in early mesenchymal progenitors is required for haematopoietic stem-cell maintenance. Nature. 2013, 495: 227-230. 10.1038/nature11926.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Park D, Spencer JA, Koh BI, Kobayashi T, Fujisaki J, Clemens TL, Lin CP, Kronenberg HM, Scadden DT: Endogenous bone marrow MSCs are dynamic, fate-restricted participants in bone maintenance and regeneration. Cell Stem Cell. 2012, 10: 259-272. 10.1016/j.stem.2012.02.003.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Roberts EW, Deonarine A, Jones JO, Denton AE, Feig C, Lyons SK, Espeli M, Kraman M, McKenna B, Wells RJ, Zhao Q, Caballero OL, Larder R, Coll AP, O’Rahilly S, Brindle KM, Teichmann SA, Tuveson DA, Fearon DT: Depletion of stromal cells expressing fibroblast activation protein-alpha from skeletal muscle and bone marrow results in cachexia and anemia. J Exp Med. 2013, 210: 1137-1151. 10.1084/jem.20122344.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Tran E, Chinnasamy D, Yu Z, Morgan RA, Lee CC, Restifo NP, Rosenberg SA: Immune targeting of fibroblast activation protein triggers recognition of multipotent bone marrow stromal cells and cachexia. J Exp Med. 2013, 210: 1125-1135. 10.1084/jem.20130110.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Jones E, McGonagle D: Human bone marrow mesenchymal stem cells in vivo. Rheumatology (Oxford). 2008, 47: 126-131.

    Article  CAS  Google Scholar 

  23. Tormin A, Li O, Brune JC, Walsh S, Schütz B, Ehinger M, Ditzel N, Kassem M, Scheding S: CD146 expression on primary nonhematopoietic bone marrow stem cells is correlated with in situ localization. Blood. 2011, 117: 5067-5077. 10.1182/blood-2010-08-304287.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Crisan M, Yap S, Casteilla L, Chen CW, Corselli M, Park TS, Andriolo G, Sun B, Zheng B, Zhang L, Norotte C, Teng PN, Traas J, Schugar R, Deasy BM, Badylak S, Buhring HJ, Giacobino JP, Lazzari L, Huard J, Péault B: A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell. 2008, 3: 301-313. 10.1016/j.stem.2008.07.003.

    Article  CAS  PubMed  Google Scholar 

  25. Nakamura Y, Arai F, Iwasaki H, Hosokawa K, Kobayashi I, Gomei Y, Matsumoto Y, Yoshihara H, Suda T: Isolation and characterization of endosteal niche cell populations that regulate hematopoietic stem cells. Blood. 2010, 116: 1422-1432. 10.1182/blood-2009-08-239194.

    Article  CAS  PubMed  Google Scholar 

  26. Corselli M, Chin CJ, Parekh C, Sahaghian A, Wang W, Ge S, Evseenko D, Wang X, Montelatici E, Lazzari L, Crooks GM, Péault B: Perivascular support of human hematopoietic stem/progenitor cells. Blood. 2013, 121: 2891-2901. 10.1182/blood-2012-08-451864.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Wu Y, Zhao RC: The role of chemokines in mesenchymal stem cell homing to myocardium. Stem Cell Rev. 2012, 8: 243-250. 10.1007/s12015-011-9293-z.

    Article  CAS  PubMed  Google Scholar 

  28. Nervi B, Link DC, DiPersio JF: Cytokines and hematopoietic stem cell mobilization. J Cell Biochem. 2006, 99: 690-705. 10.1002/jcb.21043.

    Article  CAS  PubMed  Google Scholar 

  29. Liu H, Liu S, Li Y, Wang X, Xue W, Ge G, Luo X: The role of SDF-1-CXCR4/CXCR7 axis in the therapeutic effects of hypoxia-preconditioned mesenchymal stem cells for renal ischemia/reperfusion injury. PLoS One. 2012, 7: e34608-10.1371/journal.pone.0034608.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Kitaori T, Ito H, Schwarz EM, Tsutsumi R, Yoshitomi H, Oishi S, Nakano M, Fujii N, Nagasawa T, Nakamura T: Stromal cell-derived factor 1/CXCR4 signaling is critical for the recruitment of mesenchymal stem cells to the fracture site during skeletal repair in a mouse model. Arthritis Rheum. 2009, 60: 813-823. 10.1002/art.24330.

    Article  CAS  PubMed  Google Scholar 

  31. Ito H: Chemokines in mesenchymal stem cell therapy for bone repair: a novel concept of recruiting mesenchymal stem cells and the possible cell sources. Mod Rheumatol. 2011, 21: 113-121. 10.3109/s10165-010-0357-8.

    Article  CAS  PubMed  Google Scholar 

  32. Taguchi K, Ogawa R, Migita M, Hanawa H, Ito H, Orimo H: The role of bone marrow-derived cells in bone fracture repair in a green fluorescent protein chimeric mouse model. Biochem Biophys Res Commun. 2005, 331: 31-36. 10.1016/j.bbrc.2005.03.119.

    Article  CAS  PubMed  Google Scholar 

  33. Pereira RF, Halford KW, O’Hara MD, Leeper DB, Sokolov BP, Pollard MD, Bagasra O, Prockop DJ: Cultured adherent cells from marrow can serve as long-lasting precursor cells for bone, cartilage, and lung in irradiated mice. Proc Natl Acad Sci U S A. 1995, 92: 4857-4861. 10.1073/pnas.92.11.4857.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Nilsson SK, Dooner MS, Weier HU, Frenkel B, Lian JB, Stein GS, Quesenberry PJ: Cells capable of bone production engraft from whole bone marrow transplants in nonablated mice. J Exp Med. 1999, 189: 729-734. 10.1084/jem.189.4.729.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Granero-Moltó F, Weis JA, Miga MI, Landis B, Myers TJ, O’Rear L, Longobardi L, Jansen ED, Mortlock DP, Spagnoli A: Regenerative effects of transplanted mesenchymal stem cells in fracture healing. Stem Cells. 2009, 27: 1887-1898. 10.1002/stem.103.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Horwitz EM, Prockop DJ, Fitzpatrick LA, Koo WW, Gordon PL, Neel M, Sussman M, Orchard P, Marx JC, Pyeritz RE, Brenner MK: Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nat Med. 1999, 5: 309-313. 10.1038/6529.

    Article  CAS  PubMed  Google Scholar 

  37. Myers TJ, Yan Y, Granero-Molto F, Weis JA, Longobardi L, Li T, Li Y, Contaldo C, Ozkan H, Spagnoli A: Systemically delivered insulin-like growth factor-I enhances mesenchymal stem cell-dependent fracture healing. Growth Factors. 2012, 30: 230-241. 10.3109/08977194.2012.683188.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Burastero G, Scarfì S, Ferraris C, Fresia C, Sessarego N, Fruscione F, Monetti F, Scarfò F, Schupbach P, Podestà M, Grappiolo G, Zocchi E: The association of human mesenchymal stem cells with BMP-7 improves bone regeneration of critical-size segmental bone defects in athymic rats. Bone. 2010, 47: 117-126. 10.1016/j.bone.2010.03.023.

    Article  CAS  PubMed  Google Scholar 

  39. Tortelli F, Tasso R, Loiacono F, Cancedda R: The development of tissue-engineered bone of different origin through endochondral and intramembranous ossification following the implantation of mesenchymal stem cells and osteoblasts in a murine model. Biomaterials. 2010, 31: 242-249. 10.1016/j.biomaterials.2009.09.038.

    Article  CAS  PubMed  Google Scholar 

  40. Scotti C, Tonnarelli B, Papadimitropoulos A, Scherberich A, Schaeren S, Schauerte A, Lopez-Rios J, Zeller R, Barbero A, Martin I: Recapitulation of endochondral bone formation using human adult mesenchymal stem cells as a paradigm for developmental engineering. Proc Natl Acad Sci U S A. 2010, 107: 7251-7256. 10.1073/pnas.1000302107.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Scotti C, Piccinini E, Takizawa H, Todorov A, Bourgine P, Papadimitropoulos A, Barbero A, Manz MG, Martin I: Engineering of a functional bone organ through endochondral ossification. Proc Natl Acad Sci U S A. 2013, 110: 3997-4002. 10.1073/pnas.1220108110.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. von Bahr L, Batsis I, Moll G, Hägg M, Szakos A, Sundberg B, Uzunel M, Ringden O, Le Blanc K: Analysis of tissues following mesenchymal stromal cell therapy in humans indicates limited long-term engraftment and no ectopic tissue formation. Stem Cells. 2012, 30: 1575-1578. 10.1002/stem.1118.

    Article  CAS  PubMed  Google Scholar 

  43. Rundle CH, Wang H, Yu H, Chadwick RB, Davis EI, Wergedal JE, Lau KH, Mohan S, Ryaby JT, Baylink DJ: Microarray analysis of gene expression during the inflammation and endochondral bone formation stages of rat femur fracture repair. Bone. 2006, 38: 521-529. 10.1016/j.bone.2005.09.015.

    Article  CAS  PubMed  Google Scholar 

  44. Gerstenfeld LC, Cho TJ, Kon T, Aizawa T, Tsay A, Fitch J, Barnes GL, Graves DT, Einhorn TA: Impaired fracture healing in the absence of TNF-alpha signaling: the role of TNF-alpha in endochondral cartilage resorption. J Bone Miner Res. 2003, 18: 1584-1592. 10.1359/jbmr.2003.18.9.1584.

    Article  CAS  PubMed  Google Scholar 

  45. Alblowi J, Kayal RA, Siqueira M, McKenzie E, Krothapalli N, McLean J, Conn J, Nikolajczyk B, Einhorn TA, Gerstenfeld L, Graves DT: High levels of tumor necrosis factor-alpha contribute to accelerated loss of cartilage in diabetic fracture healing. Am J Pathol. 2009, 175: 1574-1585. 10.2353/ajpath.2009.090148.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Le Blanc K, Frassoni F, Ball L, Locatelli F, Roelofs H, Lewis I, Lanino E, Sundberg B, Bernardo ME, Remberger M, Dini G, Egeler RM, Bacigalupo A, Fibbe W, Ringdén O: Developmental Committee of the European Group for Blood and Marrow Transplantation: Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. Lancet. 2008, 371: 1579-1586. 10.1016/S0140-6736(08)60690-X.

    Article  CAS  PubMed  Google Scholar 

  47. Goshima J, Goldberg VM, Caplan AI: The origin of bone formed in composite grafts of porous calcium phosphate ceramic loaded with marrow cells. Clin Orthop Relat Res. 1991, 269: 274-283.

    PubMed  Google Scholar 

  48. Tasso R, Fais F, Reverberi D, Tortelli F, Cancedda R: The recruitment of two consecutive and different waves of host stem/progenitor cells during the development of tissue-engineered bone in a murine model. Biomaterials. 2010, 31: 2121-2129. 10.1016/j.biomaterials.2009.11.064.

    Article  CAS  PubMed  Google Scholar 

  49. Lazarus HM, Haynesworth SE, Gerson SL, Rosenthal NS, Caplan AI: Ex vivo expansion and subsequent infusion of human bone marrow-derived stromal progenitor cells (mesenchymal progenitor cells): implications for therapeutic use. Bone Marrow Transplant. 1995, 16: 557-564.

    CAS  PubMed  Google Scholar 

  50. Quarto R, Mastrogiacomo M, Cancedda R, Kutepov SM, Mukhachev V, Lavroukov A, Kon E, Marcacci M: Repair of large bone defects with the use of autologous bone marrow stromal cells. N Engl J Med. 2001, 344: 385-386. 10.1056/NEJM200102013440516.

    Article  CAS  PubMed  Google Scholar 

  51. Marcacci M, Kon E, Moukhachev V, Lavroukov A, Kutepov S, Quarto R, Mastrogiacomo M, Cancedda R: Stem cells associated with macroporous bioceramics for long bone repair: 6- to 7-year outcome of a pilot clinical study. Tissue Eng. 2007, 13: 947-955. 10.1089/ten.2006.0271.

    Article  CAS  PubMed  Google Scholar 

  52. Morishita T, Honoki K, Ohgushi H, Kotobuki N, Matsushima A, Takakura Y: Tissue engineering approach to the treatment of bone tumors: three cases of cultured bone grafts derived from patients’ mesenchymal stem cells. Artif Organs. 2006, 30: 115-118. 10.1111/j.1525-1594.2006.00190.x.

    Article  PubMed  Google Scholar 

  53. Liebergall M, Schroeder J, Mosheiff R, Gazit Z, Yoram Z, Rasooly L, Daskal A, Khoury A, Weil Y, Beyth S: Stem cell-based therapy for prevention of delayed fracture union: a randomized and prospective preliminary study. Mol Ther. 2013, 21: 1631-1638. 10.1038/mt.2013.109.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Giannotti S, Trombi L, Bottai V, Ghilardi M, D’Alessandro D, Danti S, Dell’Osso G, Guido G, Petrini M: Use of autologous human mesenchymal stromal cell/fibrin clot constructs in upper limb non-unions: long-term assessment. PLoS One. 2013, 8: e73893-10.1371/journal.pone.0073893.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Tasso R, Ulivi V, Reverberi D, Lo Sicco C, Descalzi F, Cancedda R: In vivo implanted bone marrow-derived mesenchymal stem cells trigger a cascade of cellular events leading to the formation of an ectopic bone regenerative niche. Stem Cells Dev. 2013, 22: 3178-3191. 10.1089/scd.2013.0313.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Hernigou P, Poignard A, Beaujean F, Rouard H: Percutaneous autologous bone-marrow grafting for nonunions. Influence of the number and concentration of progenitor cells. J Bone Joint Surg Am. 2005, 87: 1430-1437. 10.2106/JBJS.D.02215.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Funding was provided by REDDSTAR: European Union FP7 HEALTH-F2-2012-305736.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cynthia M Coleman.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ original submitted files for images

Below are the links to the authors’ original submitted files for images.

Authors’ original file for figure 1

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Watson, L., Elliman, S.J. & Coleman, C.M. From isolation to implantation: a concise review of mesenchymal stem cell therapy in bone fracture repair. Stem Cell Res Ther 5, 51 (2014). https://doi.org/10.1186/scrt439

Download citation

  • Published:

  • DOI: https://doi.org/10.1186/scrt439

Keywords

Navigation