1 Introduction

In 1986, some approximation properties of complex Bernstein polynomials in compact disks were initially studied by Lorentz [1]. Very recently, the problem of the approximation of complex operators has been causing great concern, which has become a hot topic of research. A Voronovskaja-type result with quantitative estimate for complex Bernstein polynomials in compact disks was obtained by Gal [2] Also, in [318] similar results for complex Bernstein-Kantorovich polynomials, Bernstein-Stancu polynomials, Kantorovich-Schurer polynomials, Kantorovich-Stancu polynomials, complex Favard-Szász-Mirakjan operators, complex Beta operators of first kind, complex Baskajov-Stancu operators, complex Bernstein-Durrmeyer polynomials, complex genuine Durrmeyer-Stancu polynomials and complex Bernstein-Durrmeyer operators based on Jacobi weights were obtained.

The aim of the present article is to obtain approximation results for complex Durrmeyer-Stancu type operators which are defined for f:[0,1]C continuous on [0,1] by

M n ( α , β ) ( f ; z ) : = n k = 1 n p n , k ( z ) 0 1 p n 1 , k 1 ( t ) f ( n t + α n + β ) d t + f ( α n + β ) p n , 0 ( z ) ,
(1)

where α, β are two given real parameters satisfying the condition 0αβ, zC, n=1,2, , and p n , k (z)= ( n k ) z k ( 1 z ) n k .

Note that, for α=β=0, these operators become the complex Durrmeyer-type operators M n (f;z)= M n ( 0 , 0 ) (f;z), this case has been investigated in [11].

2 Auxiliary results

In the sequel, we shall need the following auxiliary results.

Lemma 1 Let e m (z)= z m , mN{0}, zC, nN, 0αβ, then we have that M n ( α , β ) ( e m ;z) is a polynomial of degree less than or equal to min(m,n) and

M n ( α , β ) ( e m ;z)= j = 0 m ( m j ) n j α m j ( n + β ) m M n ( e j ;z).

Proof By the definition given by (1), the proof is easy, here the proof is omitted.

Let m=0,1,2, according to [[11], Lemma 1], by a simple computation, we have

M n ( α , β ) ( e 0 ; z ) = 1 ; M n ( α , β ) ( e 1 ; z ) = n 2 z ( n + 1 ) ( n + β ) + α n + β ; M n ( α , β ) ( e 2 ; z ) = n 2 ( n + β ) 2 [ 2 n z + n ( n 1 ) z 2 ( n + 1 ) ( n + 2 ) ] M n ( α , β ) ( e 2 ; z ) = + 2 n 2 α z ( n + 1 ) ( n + β ) 2 + α 2 ( n + β ) 2 .

 □

Lemma 2 Let e m (z)= z m , mN{0}, zC, nN, 0αβ, for all |z|r, r1, we have | M n ( α , β ) ( e m ;z)| r m .

Proof The proof follows directly Lemma 1 and [[11], Lemma 2]. □

Lemma 3 Let e m (z)= z m , m,nN, zC and 0αβ, then we have

M n ( α , β ) ( e m + 1 ; z ) = z ( 1 z ) n ( n + β ) ( m + n + 1 ) ( M n ( α , β ) ( e m ; z ) ) + ( m + n z ) n + α ( 1 + 2 m + n ) ( n + β ) ( m + n + 1 ) M n ( α , β ) ( e m ; z ) α m ( n + α ) ( n + β ) 2 ( m + n + 1 ) M n ( α , β ) ( e m 1 ; z ) .
(2)

Proof Let

T n 1 , k 1 ( α , β ) ( f ) : = 0 1 p n 1 , k 1 ( t ) f ( n t + α n + β ) d t , T ˜ n 1 , k 1 ( α , β ) ( f ) : = 0 1 p n 1 , k 1 ( t ) t f ( n t + α n + β ) d t , T ˆ n 1 , k 1 ( α , β ) ( f ) : = 0 1 p n 1 , k 1 ( t ) t 2 f ( n t + α n + β ) d t , E n ( α , β ) ( f ; z ) : = n k = 1 n p n , k ( z ) T n 1 , k 1 ( α , β ) ( f ) ,

then we have

M n ( α , β ) ( f ; z ) = E n ( α , β ) ( f ; z ) + f ( α n + β ) p n , 0 ( z ) , T ˜ n 1 , k 1 ( α , β ) ( e m ) = 0 1 p n 1 , k 1 ( t ) n + β n ( n t + α n + β α n + β ) ( n t + α n + β ) m d t T ˜ n 1 , k 1 ( α , β ) ( e m ) = n + β n T n 1 , k 1 ( α , β ) ( e m + 1 ) α n T n 1 , k 1 ( α , β ) ( e m ) , T ˆ n 1 , k 1 ( α , β ) ( e m ) = 0 1 p n 1 , k 1 ( t ) ( n + β n ) 2 ( n t + α n + β α n + β ) 2 ( n t + α n + β ) m d t T ˆ n 1 , k 1 ( α , β ) ( e m ) = ( n + β n ) 2 T n 1 , k 1 ( α , β ) ( e m + 2 ) 2 α ( n + β ) n 2 T n 1 , k 1 ( α , β ) ( e m + 1 ) T ˆ n 1 , k 1 ( α , β ) ( e m ) = + ( α n ) 2 T n 1 , k 1 ( α , β ) ( e m ) .

By a simple calculation, we obtain

z(1z) p n , k (z)=(knz) p n , k (z), [ ( k 1 ) ( n 1 ) t ] p n 1 , k 1 (t)=t(1t) p n 1 , k 1 (t).

It follows that

z ( 1 z ) ( E n ( α , β ) ( e m ; z ) ) = n k = 1 n ( k n z ) p n , k ( z ) 0 1 p n 1 , k 1 ( t ) ( n t + α n + β ) m d t = n k = 1 n p n , k ( z ) 0 1 [ ( k 1 ) ( n 1 ) t + ( n 1 ) t + 1 ] p n 1 , k 1 ( t ) ( n t + α n + β ) m d t n z E n ( α , β ) ( e m ; z ) ,

where

n k = 1 n p n , k ( z ) 0 1 [ ( k 1 ) ( n 1 ) t + ( n 1 ) t + 1 ] p n 1 , k 1 ( t ) ( n t + α n + β ) m d t = n k = 1 n p n , k ( z ) 0 1 t ( 1 t ) p n 1 , k 1 ( t ) ( n t + α n + β ) m d t + n ( n 1 ) k = 1 n p n , k ( z ) T ˜ n 1 , k 1 ( α , β ) ( e m ) + n k = 1 n p n , k ( z ) T n 1 , k 1 ( α , β ) ( e m ) = n k = 1 n p n , k ( z ) 0 1 t ( 1 t ) p n 1 , k 1 ( t ) ( n t + α n + β ) m d t + ( n 1 ) ( n + β ) n E n ( α , β ) ( e m + 1 ; z ) + [ 1 α ( n 1 ) n ] E n ( α , β ) ( e m ; z ) .

Also, using integration by parts, we have

0 1 t ( 1 t ) p n 1 , k 1 ( t ) ( n t + α n + β ) m d t = 0 1 p n 1 , k 1 ( t ) ( 1 2 t ) ( n t + α n + β ) m d t m n n + β 0 1 p n 1 , k 1 ( t ) t ( 1 t ) ( n t + α n + β ) m 1 d t = T n 1 , k 1 ( α , β ) ( e m ) + 2 T ˜ n 1 , k 1 ( α , β ) ( e m ) m n n + β T ˜ n 1 , k 1 ( α , β ) ( e m 1 ) + m n n + β T ˆ n 1 , k 1 ( α , β ) ( e m 1 ) = n + β n ( m + 2 ) T n 1 , k 1 ( α , β ) ( e m + 1 ) ( 1 + 2 α n + m + 2 α m n ) T n 1 , k 1 ( α , β ) ( e m ) + α m ( α + n ) n ( n + β ) T n 1 , k 1 ( α , β ) ( e m 1 ) .

So, in conclusion, we have

z ( 1 z ) ( E n ( α , β ) ( e m ; z ) ) = n + β n ( m + n + 1 ) E n ( α , β ) ( e m + 1 ; z ) [ α ( 1 + 2 m + n ) n + m + n z ] E n ( α , β ) ( e m ; z ) + α m ( n + α ) n ( n + β ) E n ( α , β ) ( e m 1 ; z ) ,

which implies the recurrence in the statement. □

Lemma 4 Let nN, m=2,3, , e m (z)= z m , S n , m ( α , β ) (z):= M n ( α , β ) ( e m ;z) z m , zC and 0αβ, we have

S n , m ( α , β ) ( z ) = z ( 1 z ) n ( n + β ) ( m + n ) ( M n ( α , β ) ( e m 1 ; z ) ) + ( m 1 + n z ) n + α ( m 1 + n ) ( n + β ) ( m + n ) S n , m 1 ( α , β ) ( z ) + α m ( n + β ) ( m + n ) M n ( α , β ) ( e m 1 ; z ) α ( m 1 ) ( n + α ) ( n + β ) 2 ( m + n ) M n ( α , β ) ( e m 2 ; z ) + ( m 1 + n z ) n + α ( m 1 + n ) ( n + β ) ( m + n ) z m 1 z m .
(3)

Proof Using the recurrence formula (2), by a simple calculation, we can easily get the recurrence (3), the proof is omitted. □

3 Main results

The first main result is expressed by the following upper estimates.

Theorem 1 Let 0αβ, 1rR, D R ={zC:|z|<R}. Suppose that f: D R C is analytic in D R , i.e., f(z)= m = 0 c m z m for all z D R .

  1. (i)

    For all |z|r and nN, we have

    | M n ( α , β ) ( f ; z ) f ( z ) | K r ( α , β ) ( f ) n ,

where K r ( α , β ) (f)=(1+r) m = 1 | c m |m(m+1+α+β) r m 1 <.

  1. (ii)

    (Simultaneous approximation) If 1r< r 1 <R are arbitrarily fixed, then for all |z|r and n,pN, we have

    | ( M n ( α , β ) ( f ; z ) ) ( p ) f ( p ) ( z ) | K r 1 ( α , β ) ( f ) p ! r 1 ( n + β ) ( r 1 r ) p + 1 ,

where K r 1 ( α , β ) (f) is defined as in the above point (i).

Proof Taking e m (z)= z m , by the hypothesis that f(z) is analytic in D R , i.e., f(z)= m = 0 c m z m for all z D R , it is easy for us to obtain

M n ( α , β ) (f;z)= m = 0 c m M n ( α , β ) ( e m ;z).

Therefore, we get

| M n ( α , β ) ( f ; z ) f ( z ) | m = 0 | c m | | M n ( α , β ) ( e m ; z ) e m ( z ) | = m = 1 | c m | | M n ( α , β ) ( e m ; z ) e m ( z ) | ,

as M n ( α , β ) ( e 0 ;z)= e 0 (z)=1.

  1. (i)

    For mN, taking into account that M n ( α , β ) ( e m 1 ;z) is a polynomial of degree min(m1,n), by the well-known Bernstein inequality and Lemma 2, we get

    | ( M n ( α , β ) ( e m 1 ; z ) ) | m 1 r max { | M n ( α , β ) ( e m 1 ; z ) | : | z | r } (m1) r m 2 .

On the one hand, when m=1, for |z|r, by Lemma 1, we have

| M n ( α , β ) ( e 1 ; z ) e 1 ( z ) | = | n 2 z ( n + 1 ) ( n + β ) + α n + β z | 1 + r n (2+α+β).

When m2, for nN, |z|r, 0αβ, in view of |(m1+nz)n+α(m1+n)|(n+β)(m+n)r, using the recurrence formula (3) and the above inequality, we have

| M n ( α , β ) ( e m ; z ) e m ( z ) | = | S n , m ( α , β ) ( z ) | r ( 1 + r ) n ( m 1 ) r m 2 + r | S n , m 1 ( α , β ) ( z ) | + α n r m 1 + α n r m 2 + m + 1 + β n ( 1 + r ) r m 1 m 1 n ( 1 + r ) r m 1 + r | S n , m 1 ( α , β ) ( z ) | + α n ( 1 + r ) r m 1 + m + 1 + β n ( 1 + r ) r m 1 = r | S n , m 1 ( α , β ) ( z ) | + 2 m + α + β n ( 1 + r ) r m 1 .

By writing the last inequality, for m=2, , we easily obtain step by step the following:

| M n ( α , β ) ( e m ; z ) e m ( z ) | r ( r | S n , m 2 ( α , β ) ( z ) | + 2 ( m 1 ) + α + β n ( 1 + r ) r m 2 ) + 2 m + α + β n ( 1 + r ) r m 1 = r 2 | S n , m 2 ( α , β ) ( z ) | + 2 ( m 1 + m ) + 2 ( α + β ) n ( 1 + r ) r m 1 1 + r n m ( m + 1 + α + β ) r m 1 .

In conclusion, for any m,nN, |z|r, 0αβ, we have

| M n ( α , β ) ( e m ; z ) e m ( z ) | 1 + r n m(m+1+α+β) r m 1 ,

from which it follows that

| M n ( α , β ) ( f ; z ) f ( z ) | 1 + r n m = 1 | c m |m(m+1+α+β) r m 1 .

By assuming that f(z) is analytic in D R , we have f ( 2 ) (z)= m = 2 c m m(m1) z m 2 and the series is absolutely convergent in |z|r, so we get m = 2 | c m |m(m1) r m 2 <, which implies K r ( α , β ) (f)=(1+r) m = 1 | c m |m(m+1+α+β) r m 1 <.

  1. (ii)

    For the simultaneous approximation, denoting by Γ the circle of radius r 1 >r and center 0, since for any |z|r and υΓ, we have |υz| r 1 r. By Cauchy’s formula, it follows that for all |z|r and nN, we have

    | ( M n ( α , β ) ( f ; z ) ) ( p ) f ( p ) ( z ) | = p ! 2 π | Γ M n ( α , β ) ( f ; υ ) f ( υ ) ( υ z ) p + 1 d υ | K r 1 ( α , β ) ( f ) n p ! 2 π 2 π r 1 ( r 1 r ) p + 1 = K r 1 ( α , β ) ( f ) n p ! r 1 ( r 1 r ) p + 1 ,

which proves the theorem. □

Theorem 2 Let 0αβ, R>1, D R ={zC:|z|<R}. Suppose that f: D R C is analytic in D R , i.e., f(z)= k = 0 c k z k for all z D R . For any fixed r[1,R] and all nN, |z|r, we have

| M n ( α , β ) ( f ; z ) f ( z ) α ( 1 + β ) z n f ( z ) z ( 1 z ) n f ( z ) | M r ( f ) n 2 + M r , 1 ( α , β ) ( f ) n ( n + β ) + M r , 2 ( α , β ) ( f ) ( n + β ) 2 ,
(4)

where M r (f)= k = 1 | c k |k B k , r r k < with B k , r = r 2 (2 k 3 +3 k 2 +3k+1)+r(4 k 3 +12 k 2 +14k+6)+(2 k 3 +9 k 2 +13k+6), M r , 1 ( α , β ) (f)= k = 1 | c k |[2k ( k 1 ) 2 α+2 k 3 βr+ k 2 αβ+ k 2 β 2 r] r k 1 , M r , 2 ( α , β ) (f)= k = 1 | c k | k ( k 1 ) ( α 2 + β 2 r 2 ) 2 r k 2 <.

Proof For all z D R , we have

M n ( α , β ) ( f ; z ) f ( z ) α ( 1 + β ) z n f ( z ) z ( 1 z ) n f ( z ) = M n ( α , β ) ( f ; z ) f ( z ) + z n f ( z ) z ( 1 z ) n f ( z ) α β z n f ( z ) = [ M n ( f ; z ) f ( z ) z ( 1 z ) f ( z ) z f ( z ) n ] + [ M n ( α , β ) ( f ; z ) M n ( f ; z ) α β z n f ( z ) ] : = I 1 + I 2 .

By [[11], Theorem 1], we have | I 1 | M r ( f ) n 2 , where M r (f)= k = 1 | c k |k B k , r r k < with B k , r = r 2 (2 k 3 +3 k 2 +3k+1)+r(4 k 3 +12 k 2 +14k+6)+(2 k 3 +9 k 2 +13k+6).

Next, let us estimate | I 2 |.

By f is analytic in D R , i.e., f(z)= k = 0 c k z k for all z D R , we have

| I 2 | = | k = 1 c k [ M n ( α , β ) ( e k ; z ) M n ( e k ; z ) α β z n k z k 1 ] | k = 1 | c k | | M n ( α , β ) ( e k ; z ) M n ( e k ; z ) α β z n k z k 1 | .

On the one hand, when k2, since n k ( n + β ) k 1= j = 0 k 1 ( k j ) n j β k j ( n + β ) k , by Lemma 1, we obtain

M n ( α , β ) ( e k ; z ) M n ( e k ; z ) α β z n k z k 1 = j = 0 k 1 ( k j ) n j α k j ( n + β ) k M n ( e j ; z ) + [ n k ( n + β ) k 1 ] M n ( e k ; z ) α β z n k z k 1 = j = 0 k 2 ( k j ) n j α k j ( n + β ) k M n ( e j ; z ) + k n k 1 α ( n + β ) k M n ( e k 1 ; z ) j = 0 k 1 ( k j ) n j β k j ( n + β ) k M n ( e k ; z ) α β z n k z k 1 = j = 0 k 2 ( k j ) n j α k j ( n + β ) k M n ( e j ; z ) + k n k 1 α ( n + β ) k [ M n ( e k 1 ; z ) e k 1 ( z ) ] + k n k 1 α ( n + β ) k z k 1 j = 0 k 2 ( k j ) n j β k j ( n + β ) k M n ( e k ; z ) k n k 1 β ( n + β ) k [ M n ( e k ; z ) e k ( z ) ] k n k 1 β ( n + β ) k z k α β z n k z k 1 = j = 0 k 2 ( k j ) n j α k j ( n + β ) k M n ( e j ; z ) + k n k 1 α ( n + β ) k [ M n ( e k 1 ; z ) e k 1 ( z ) ] j = 0 k 2 ( k j ) n j β k j ( n + β ) k M n ( e k ; z ) k n k 1 β ( n + β ) k [ M n ( e k ; z ) e k ( z ) ] [ 1 n n k 1 ( n + β ) k ] k α z k 1 + [ 1 n n k 1 ( n + β ) k ] k β z k .

By the proof of [[11], Corollary 3], for any kN, |z|r, r1, we have

| M n ( e k ; z ) | r k , | M n ( e k ; z ) e k | 2 k 2 n r k .

Hence, for any k2, |z|r, r1, we can get

| j = 0 k 2 ( k j ) n j α k j ( n + β ) k M n ( e j ; z ) | j = 0 k 2 ( k j ) n j α k j ( n + β ) k r k 2 = j = 0 k 2 k ( k 1 ) ( k j ) ( k j 1 ) ( k 2 j ) n j α k 2 j ( n + β ) k 2 α 2 ( n + β ) 2 r k 2 k ( k 1 ) 2 α 2 ( n + β ) 2 j = 0 k 2 ( k 2 j ) n j α k 2 j ( n + β ) k 2 r k 2 k ( k 1 ) 2 α 2 ( n + β ) 2 r k 2

and

| k n k 1 α ( n + β ) k [ M n ( e k 1 ; z ) e k 1 ( z ) ] | 2 k ( k 1 ) 2 α n ( n + β ) r k 1 .

Also, using

1 n n k 1 ( n + β ) k = j = 0 k 1 ( k j ) n j β k j n ( n + β ) k k β n ( n + β )

for any k2, |z|r, r1, we get

| M n ( α , β ) ( e k ; z ) M n ( e k ; z ) α β z n k z k 1 | k ( k 1 ) 2 α 2 ( n + β ) 2 r k 2 + 2 k ( k 1 ) 2 α n ( n + β ) r k 1 + k ( k 1 ) 2 β 2 ( n + β ) 2 r k + 2 k 3 β n ( n + β ) r k + k 2 α β n ( n + β ) r k 1 + k 2 β 2 n ( n + β ) r k = r k 1 n ( n + β ) [ 2 k ( k 1 ) 2 α + 2 k 3 β r + k 2 α β + k 2 β 2 r ] + r k 2 ( n + β ) 2 k ( k 1 ) ( α 2 + β 2 r 2 ) 2 .

On the other hand, when k=1, using Lemma 1 and M n ( e 1 ;z)= n z n + 1 (see [19]), by a simple calculation, we can get | M n ( α , β ) ( e 1 ;z) M n ( e 1 ;z) α β z n | 1 n ( n + β ) (2βr+αβ+ β 2 r).

So, for any kN, |z|r, r1, we have

| M n ( α , β ) ( e k ; z ) M n ( e k ; z ) α β z n k z k 1 | r k 1 n ( n + β ) [ 2 k ( k 1 ) 2 α + 2 k 3 β r + k 2 α β + k 2 β 2 r ] + r k 2 ( n + β ) 2 k ( k 1 ) ( α 2 + β 2 r 2 ) 2 .

Hence, we have

| I 2 | M r , 1 ( α , β ) ( f ) n ( n + β ) + M r , 2 ( α , β ) ( f ) ( n + β ) 2 ,

where M r , 1 ( α , β ) (f)= k = 1 | c k |[2k ( k 1 ) 2 α+2 k 3 βr+ k 2 αβ+ k 2 β 2 r] r k 1 , M r , 2 ( α , β ) (f)= k = 1 | c k | k ( k 1 ) ( α 2 + β 2 r 2 ) 2 r k 2 .

In conclusion, we obtain

| M n ( α , β ) ( f ; z ) f ( z ) α ( 1 + β ) z n f ( z ) z ( 1 z ) n f ( z ) | | I 1 | + | I 2 | M r ( f ) n 2 + M r , 1 ( α , β ) ( f ) n ( n + β ) + M r , 2 ( α , β ) ( f ) ( n + β ) 2 .

 □

In the following theorem, we obtain the exact order of approximation.

Theorem 3 Let 0αβ, R>1, D R ={zC:|z|<R}. Suppose that f: D R C is analytic in D R . If f is not a polynomial of degree 0, then for any r[1,R), we have

M n ( α , β ) ( f ; ) f r C r ( α , β ) ( f ) n ,nN,

where f r =max{|f(z)|;|z|r} and the constant C r ( α , β ) (f)>0 depends on f, r and α, β, but it is independent of n.

Proof Define e 1 (z)=z and

H n ( α , β ) (f;z)= M n ( α , β ) (f;z)f(z) α ( 1 + β ) z n f (z) z ( 1 z ) n f (z).

For all z D R and nN, we have

M n ( α , β ) ( f ; z ) f ( z ) = 1 n { [ α ( 1 + β ) z ] f ( z ) + z ( 1 z ) f ( z ) + 1 n [ n 2 H n ( α , β ) ( f ; z ) ] } .

In view of the property F + G r | F r G r | F r G r , it follows

M n ( α , β ) ( f ; ) f r 1 n { [ α ( 1 + β ) e 1 ] f + e 1 ( 1 e 1 ) f r 1 n [ n 2 H n ( α , β ) ( f ; ) r ] } .

Considering the hypothesis that f is not a polynomial of degree 0 in D R , we have

[ α ( 1 + β ) e 1 ] f + e 1 ( 1 e 1 ) f r >0.

Indeed, supposing the contrary, it follows that

[ α ( 1 + β ) z ] f (z)+z(1z) f (z)=0for all z D ¯ r .

Defining y(z)= f (z) and looking for the analytic function y(z) under the form y(z)= k = 0 a k z k , after replacement in the differential equation, the coefficients identification method immediately leads to a k =0 for all kN{0}. This implies that y(z)=0 for all z D ¯ r and therefore f is constant on D ¯ r , a contradiction with the hypothesis.

Using inequality (4), we get

n 2 H n ( α , β ) ( f ; ) r N r ( α , β ) (f),
(5)

where N r ( α , β ) (f)= M r (f)+ M r , 1 ( α , β ) (f)+ M r , 2 ( α , β ) (f).

Therefore, there exists an index n 0 , depending only on f, r and α, β, such that for all n n 0 , we have

[ α ( 1 + β ) e 1 ] f + e 1 ( 1 e 1 ) f r 1 n [ n 2 H n ( α , β ) ( f ; ) r ] 1 2 [ ( 1 + α ) ( 2 + β ) e 1 ] f + e 1 ( 1 e 1 ) f r ,

which implies

M n ( α , β ) ( f ; ) f r 1 2 n [ α ( 1 + β ) e 1 ] f + e 1 ( 1 e 1 ) f r for all n n 0 .

For n{1,2,, n 0 1}, we have

M n ( α , β ) ( f ; ) f r W r , n ( α , β ) ( f ) n ,

where W r , n ( α , β ) (f)=n M n ( α , β ) ( f ; ) f r >0.

As a conclusion, we have

M n ( α , β ) ( f ; ) f r C r ( α , β ) ( f ) n for all nN,

where

C r ( α , β ) ( f ) = min { W r , 1 ( α , β ) ( f ) , W r , 2 ( α , β ) ( f ) , , W r , n 0 1 ( α , β ) ( f ) , 1 2 [ α ( 1 + β ) e 1 ] f + e 1 ( 1 e 1 ) f r } ,

this completes the proof. □

Combining Theorem 3 with Theorem 1, we get the following result.

Corollary 1 Let 0αβ, R>1, D R ={zC:|z|<R}. Suppose that f: D R C is analytic in D R . If f is not a polynomial of degree 0, then for any r[1,R), we have

M n ( α , β ) ( f ; ) f r 1 n ,nN,

where f r =max{|f(z)|;|z|r} and the constants in the equivalence depend on f, r and α, β, but they are independent of n.

Theorem 4 Let 0αβ, R>1, D R ={zC:|z|<R}. Suppose that f: D R C is analytic in D R . Also, let 1r< r 1 <R and pN be fixed. If f is not a polynomial of degree p1, then we have

( M n ( α , β ) ( f ; ) ) ( p ) f ( p ) r 1 n ,nN,

where f r =max{|f(z)|;|z|r} and the constants in the equivalence depend on f, r, r 1 , p, α and β, but they are independent of n.

Proof Taking into account the upper estimate in Theorem 1, it remains to prove the lower estimate only. Denoting by Γ the circle of radius r 1 >r and center 0, by Cauchy’s formula, it follows that for all |z|r and nN, we have

( M n ( α , β ) ( f ; z ) ) ( p ) f ( p ) (z)= p ! 2 π i Γ M n ( α , β ) ( f ; v ) f ( v ) ( v z ) p + 1 dv.

Keeping the notation there for H n ( α , β ) (f;z), for all nN, we have

M n ( α , β ) ( f ; z ) f ( z ) = 1 n { [ α ( 1 + β ) z ] f ( z ) + z ( 1 z ) f ( z ) + 1 n [ n 2 H n ( α , β ) ( f ; z ) ] } .

By using Cauchy’s formula, for all vΓ, we get

( M n ( α , β ) ( f ; z ) ) ( p ) f ( p ) ( z ) = 1 n { [ ( α ( 1 + β ) z ) f ( z ) + z ( 1 z ) f ( z ) ] ( p ) + 1 n p ! 2 π i Γ n 2 H n ( α , β ) ( f ; v ) ( v z ) p + 1 d v } .

Passing now to r and denoting e 1 (z)=z, it follows

( M n ( α , β ) ( f ; ) ) ( p ) f ( p ) r 1 n [ [ ( α ( 1 + β ) e 1 ) f + e 1 ( 1 e 1 ) f ] ( p ) r 1 n p ! 2 π i Γ n 2 H n ( α , β ) ( f ; v ) ( v ) p + 1 d v r ] .

Since for any |z|r and υΓ we have |υz| r 1 r, so, by inequality (5), we get

p ! 2 π i Γ n 2 H n ( α , β ) ( f ; v ) ( v ) p + 1 d v r p ! 2 π 2 π r 1 n 2 H n ( α , β ) ( f ; ) r 1 ( r 1 r ) p + 1 N r 1 ( α , β ) ( f ) p ! r 1 ( r 1 r ) p + 1 ,

where N r 1 ( α , β ) (f)= M r 1 (f)+ M r 1 , 1 ( α , β ) (f)+ M r 1 , 2 ( α , β ) (f).

Taking into account that the function f is analytic in D R , by following exactly the lines in Gal [5], seeing also the book Gal [[6], pp.77-78] (where it is proved that [ ( α β e 1 ) f + e 1 ( 1 e 1 ) 2 f ] ( p ) r >0), we have

[ ( α ( 1 + β ) e 1 ) f + e 1 ( 1 e 1 ) f ] ( p ) r >0.

In continuation, reasoning exactly as in the proof of Theorem 3, we can get the desired conclusion. □