, 11:45,
Open Access This content is freely available online to anyone, anywhere at any time.
Date: 16 Aug 2012

Socio-economic factors associated with infant mortality in Italy: an ecological study

Abstract

Introduction

One issue that continues to attract the attention of public health researchers is the possible relationship in high-income countries between income, income inequality and infant mortality (IM). The aim of this study was to assess the associations between IM and major socio-economic determinants in Italy.

Methods

Associations between infant mortality rates in the 20 Italian regions (2006–2008) and the Gini index of income inequality, mean household income, percentage of women with at least 8 years of education, and percentage of unemployed aged 15–64 years were assessed using Pearson correlation coefficients. Univariate linear regression and multiple stepwise linear regression analyses were performed to determine the magnitude and direction of the effect of the four socio-economic variables on IM.

Results

The Gini index and the total unemployment rate showed a positive strong correlation with IM (r = 0.70; p < 0.001 and r = 0.84; p < 0.001 respectively), mean household income showed a strong negative correlation (r = −0.78; p < 0.001), while female educational attainment presented a weak negative correlation (r = −0.45; p < 0.05). Using a multiple stepwise linear regression model, only unemployment rate was independently associated with IM (b = 0.15, p < 0.001).

Conclusions

In Italy, a high-income country where health care is universally available, variations in IM were strongly associated with relative and absolute income and unemployment rate. These results suggest that in Italy IM is not only related to income distribution, as demonstrated for other developed countries, but also to economic factors such as absolute income and unemployment. In order to reduce IM and the existing inequalities, the challenge for Italian decision makers is to promote economic growth and enhance employment levels.