Skip to main content
Log in

The effect of dosage on the photocatalytic degradation of organic pollutants

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Heterogeneous photocatalytic degradation of many organic pollutants, such as phenol and phenol derivatives, may be optimised if the catalyst surface saturation and the appearance and accumulation of non-photocatalytically degradable intermediates is avoided. It has been shown that under certain concentration threshold the highest degradation efficiencies are achieved. Over these concentrations, degradation rates become constant owing to the limited catalyst surface. By the dosage of the contaminant, currently in an aqueous solution, the process may be optimised, thus avoiding the formation of inert intermediates which may be more toxic than the parental compound. The effect of dosage on the photocatalytic degradation of phenol and phenol derivatives, such as salicylic acid and 4-aminophenol has been studied. Comparatively notably higher efficiencies have been obtained compared to those of the high initial single dose experiments (non-dosage), for which high initial concentrations of the organics resulted in the catalysts poisoning. Degussa P-25 and its combination with 13% (w/w) activated carbon, namely AC−TiO2, have been used as catalysts. Almost complete degradations are achieved at low dosage rates (1–2 pmm/min). At higher dosage rates, different processes such as catalyst poisoning predominate, resulting in lower degradation efficiencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. V. Auguliaro, E. Davì, L. Palmisano, M. Schiavello and A. Sclafani, Appl. Catal. 65, 101 (1990).

    Article  CAS  Google Scholar 

  2. D. Chen and A. K. Ray, Appl. Catal. B: Environ. 23, 143 (1999).

    Article  Google Scholar 

  3. J. Villaseñor, P. Reyes and G. Pecchi, Catal. Today 76, 121 (2002).

    Article  Google Scholar 

  4. H. Chung, W. Yizhong and T. Hongxiao, Chemosphere 41, 1205 (2000).

    Article  Google Scholar 

  5. J. Grzechulska and A. Waldemar-Morawski, Appl. Catal. B: Environ. 46, 415 (2003).

    Article  CAS  Google Scholar 

  6. G. Colón, M. C. Hidalgo and J. A. Navío, Appl. Catal. B: Environ. 45, 39 (2003).

    Article  Google Scholar 

  7. S. Parra J. Olivero, L. Pacheco and C. Pulgarin, Appl. Catal. B: Environ. 43, 293 (2003).

    Article  CAS  Google Scholar 

  8. G. Colón, M. C. Hidalgo, M. Macías, J. A. Navío and J. M. Doña, Appl. Catal. B: Environ. 43, 163 (2003).

    Article  Google Scholar 

  9. D. M. Alfano, D. Bahnemann, A. E. Cassano, R. Dillert and R. Goslich, Catal. Today 58, 199 (2000).

    Article  CAS  Google Scholar 

  10. J. Blanco Gálvez and S. Malato Rodríguez, Tecnología de Fotocatálisis Solar. Instituto de Estudios Almerienses de la Diputación de Almería, CIEMAT, Almería (1996).

    Google Scholar 

  11. M. Schiavello (Ed.), Heterogeneous Photocatalysis, Wiley, Chichester (1997).

    Google Scholar 

  12. A. Fujisima, T. N. Rao and D. A. Tryk, J. Photochem. Photobiol. C: Photochem. Rev. 1, 1 (2000).

    Article  Google Scholar 

  13. A. M. Peiró, J. A. Ayllón, J. Peral and X. Doménech, Appl. Catal B: Environ. 30, 359 (2001).

    Article  Google Scholar 

  14. J. Peral, J. Casado and J. Doménech, J. Photochem. Photobiol. A: Chem. 44, 209 (1988).

    Article  CAS  Google Scholar 

  15. K. Okamoto, Y. Yamamoto, H. Tanaka and A. Itaya, Bull. Chem. Soc. Jpn. 58, 2015 (1985).

    Article  CAS  Google Scholar 

  16. J. A. Herrera Melián, J. M. Doña Rodríguez, A. Viera Suárez, E. Tello Rendón, C. Valdés do Campo, J. Araña Mesa and J. Pérez Peña, Water Res. 34, 3967 (2000).

    Article  Google Scholar 

  17. J. Araña, E. Tello Rendón, J. M. Doña Rodríguez, C. Valdés do Campo, J. A. Herrera Melián, O. González Díaz and J. Pérez Peña, Water Sci. Technol. 44, 229 (2001).

    Google Scholar 

  18. K. Wang, Y. Hsieh, M. Chou and C. Chang, Appl. Catal. B: Environ. 21, 1 (1999).

    Article  Google Scholar 

  19. E. Leyva, E. Moctezuma, M. G. Ruíz and L. Torres-Martínez, Catal. Today 40, 367 (1998).

    Article  CAS  Google Scholar 

  20. J. Araña, E. Tello Rendón, J. M. Doña Rodríguez, C. Valdés do Campo, J. A. Herrera Melián, O. González Díaz and J. Pérez Peña, Appl. Catal. B: Environ. 30, 1 (2001).

    Article  Google Scholar 

  21. J. M. Herrmann, Catal. Today 53, 115 (1999).

    Article  CAS  Google Scholar 

  22. J. Araña, J. M. Doña-Rodriguez, E. Tello-Rendón, C. Garriga i Cabo, O. González Díaz, J. A. Herrera Melián, J. Pérez Peña, G. Colón and J. A. Navío, Appl. Catal. B: Environ. 44, 161 (2003).

    Article  Google Scholar 

  23. J. Araña, J. M. Doña-Rodriguez, E. Tello-Rendón, C. Garriga i Cabo, O. González Díaz, J. A. Herrera Melián, J. Pérez Peña, G. Colón and J. A. Navío, Appl. Catal. B: Environ. 44, 153 (2003).

    Article  Google Scholar 

  24. N. Serpone and A. Salinaro, Pure Appl. Chem. 71, 303 (1999).

    Article  CAS  Google Scholar 

  25. A. Salinaro, A. V. Emeline, J. Zhao, H. Hidaka, V. K. Ryabchuk and N. Serpone, Pure Appl. Chem. 71, 321 (1999).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Doña.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doña, J.M., Garriga, C., Araña, J. et al. The effect of dosage on the photocatalytic degradation of organic pollutants. Res. Chem. Intermed. 33, 351–358 (2007). https://doi.org/10.1163/156856707779238676

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1163/156856707779238676

Keywords

Navigation