Skip to main content
Log in

Preparation and application of nanocatalysts via surface functionalization of mesoporous materials

  • Full Papers
  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Surface immobilization of active species onto mesoporous materials is gaining importance, especially in the design of functionalized mesoporous materials as a nanocatalyst through heterogenization of homogeneous catalytic systems. This article summarizes recent work on the synthesis, characterization and catalytic performance of the functionalized mesoporous catalysts performed by the present authors. A cationic rhenium(I) complex was encapsulated into mesoporous Al-MCM-41 molecular sieve using a ion-exchange method, yielding a new photocatalyst to be active for photocatalytic reduction of CO2. Surface functionalization of mesoporous silica SBA-15 with sulfonic acid groups was investigated to give a solid acid catalyst. The chemically modified Fe-containing mesoporous materials, which are active for hydroxylation of phenol, were prepared by a surface-grafting method that iron salts are immobilized onto mesoporous Si-MCM-41 with the help of 3-aminopropyltrimethoxysilane as a linker. A cobalt(III) complex was heterogenized onto mesoporous silica SBA-15 containing carboxylic groups in order to utilize as a solid catalyst for the liquid-phase oxidation of aromatic hydrocarbons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Szostak, Molecular Sieves: Principles of Synthesis and Identification. Van Nostrand-Reinhold, New York, NY (1989).

    Google Scholar 

  2. S. Hermans, R. Raja, J. M. Thomas, B. F. G. Johnson, G. Sankar and D. Gleeson, Angew. Chem. Int. Edn. 40, 1211 (2001).

    Article  CAS  Google Scholar 

  3. X. He and D. Antonelli, Angew. Chem. Int. Edn. 41, 214 (2002).

    Article  CAS  Google Scholar 

  4. R. Anwander, Chem. Mater. 13, 4419 (2001).

    Article  CAS  Google Scholar 

  5. D. Trong On, D. Desplantier-Giscard and S. Kaliaguine, Appl. Catal. A: Gen. 222, 299 (2001).

    Article  Google Scholar 

  6. J.H. Clark, Green Chem. 1, 1 (1999)

    Article  CAS  Google Scholar 

  7. I. W. C. E. Arends and R. A. Sheldon, Appl. Catal. A 212, 175 (2001).

    Article  CAS  Google Scholar 

  8. G. Calleja, R. van Grieken, R. García, J. A Melero and J. Iglesias, J. Mol. Catal. A: Chem. 182–183, 215 (2002).

    Article  Google Scholar 

  9. J. M. Thomas and R. Raja, Chem. Rec. 1, 448 (2001).

    Article  CAS  Google Scholar 

  10. A. T. Bell, Science 299, 1688 (2003).

    Article  CAS  Google Scholar 

  11. S. Tazuke and N. Kitamura, Nature 275, 301 (1978).

    Article  CAS  Google Scholar 

  12. J. Hawecker, J-M. Lehn and R. Ziessel, Helv. Chim. Acta 69, 1990 (1986).

    Article  CAS  Google Scholar 

  13. M. Halmann, Nature 275, 30 (1978).

    Article  Google Scholar 

  14. H. M. Sung-Suh, D. S. Kim, C. W. Lee and S.-E. Park, Appl. Organometal. Chem. 14, 826 (2000).

    Article  CAS  Google Scholar 

  15. S.-E. Park, H. M. Sung-Suh, D. S. Kim and J. Ko, Stud. Surf. Sci. Catal. 129, 807 (2000).

    Article  CAS  Google Scholar 

  16. H. M. Sung-Suh, W. Y. Kim, J.-S. Chang, C. W. Lee and S.-E. Park in: Proc. 12th Conf., Vol. 3, p. 2187. MRS, Washington, DC (1999).

    Google Scholar 

  17. J.-F. Wu, T.-L. Chen, L.-J. Ma, M.-W. Lin and S.-B. Liu, Zeolites, 12, 86 (1992).

    Article  CAS  Google Scholar 

  18. W. Kaim and S. Kohlmann, Inorg. Chem. 29, 2909 (1990).

    Article  CAS  Google Scholar 

  19. W. Kaim and S. Kohlmann, Chem. Phys. Lett. 139, 365 (1987).

    Article  CAS  Google Scholar 

  20. H. Hori, F. P. A. Hohnson, K. Koike, O. Ishitani and T. Ibusuki, J. Photochem. Photobiol. A: Chem. 96, 171 (1996).

    Article  CAS  Google Scholar 

  21. K. Kalyanasundaram, J. Chem. Soc. Faraday Trans. 2, 2401 (1986).

    Google Scholar 

  22. G. J. Stor, F. Hartl, J. W. M. van Outersterp and D. J Stufkens, Organometallics 14, 1115 (1995).

    Article  CAS  Google Scholar 

  23. K. B. Yoon, Chem. Rev. 93, 321 (1992).

    Article  Google Scholar 

  24. M. Anpo and K. Chiba, J. Mol. Catal. 74, 207 (1992).

    Article  CAS  Google Scholar 

  25. W. F. Hoelderich, M. Hesse and F. Naumann, Angew. Chem. Int. Edn. 27, 226 (1988).

    Article  Google Scholar 

  26. A. Corma, Chem. Rev. 97, 2373 (1997).

    Article  CAS  Google Scholar 

  27. W. D. Bossaert, D. E. De Vos, W. M. Van Rhyn, J. Bullen, P. J. Grobet and P. A. Jacobs, J. Catal. 182, 156 (1999).

    Article  CAS  Google Scholar 

  28. D. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka and G. D. Stucky, Science 279, 548 (1998).

    Article  CAS  Google Scholar 

  29. D. Margolese, J. A. Melero, S. C. Christiansen, B. F. Chmelka and G. D. Stucky, Chem. Mater. 12, 2448 (2000).

    Article  CAS  Google Scholar 

  30. T. Maschmeyer, F. Rey, G. Sankar and J. M. Thomas, Nature 378, 158 (1995).

    Article  Google Scholar 

  31. R. D. Oldroyd, J. M. Thomas, T. Maschmeyer, P. A. MacFaul, D. W. Snelgrove, K. V. Ingold and D. M. Wayner, Angew. Chem. Int. Edn. 35, 2787 (1996).

    Article  CAS  Google Scholar 

  32. L. Marchese, T. Maschmeyer, E. Gianotti, S. Coluccia and J. M. Thomas, J. Phys. Chem. B. 101, 8836 (1997).

    Article  CAS  Google Scholar 

  33. C. P. Mehnert, D. W. Weaver and J. Y. Ying, J. Am. Chem. Soc. 120, 12289 (1998).

    Article  CAS  Google Scholar 

  34. C. W. Lee, D. H. Ahn, B. Wang, J. S. Hwang and S.-E. Park, Micropor. Mesopor. Mater. 44–45, 587 (2001).

    Article  Google Scholar 

  35. P. Ragharvendrachar and S. Ramachandran, Ind. Eng. Chem. Res. Dev. 31, 453 (1992).

    Article  Google Scholar 

  36. B. K. Das and J. H. Clark, Chem. Commun., 605 (2000).

  37. J. M. Thomas and R. Raja, Chem. Commun., 675 (2001).

  38. D. R. Burri, K.-W. Jun. Y.-H. Kim, J. M. Kim, S.-E. Park and J. S Yoo, Chem. Lett., 212 (2002).

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jong-San Chang or Sang-Eon Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, JS., Hwang, JS. & Park, SE. Preparation and application of nanocatalysts via surface functionalization of mesoporous materials. Res. Chem. Intermed. 29, 921–938 (2003). https://doi.org/10.1163/156856703322601915

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1163/156856703322601915

Keywords

Navigation