Skip to main content

Advertisement

Log in

Mechanisms of action of paracetamol and related analgesics

  • Published:
InflammoPharmacology Aims and scope Submit manuscript

Abstract

Paracetamol and salicylate are weak inhibitors of both isolated cyclooxygenase-1 (COX-1) and COX-2 but are potent inhibitors of prostaglandin (PG) synthesis in intact cells if low concentrations of arachidonic acid are available. The effects of both drugs are overcome by increased levels of hydroperoxides. At low concentrations of arachidonic acid, COX-2 is the major isoenzyme involved in PG synthesis when both COX-1 and COX-2 are present in cells. Therefore, paracetamol and salicylate may selectively inhibit PG synthesis involving COX-2 because the lower flux through this pathway produces lesser levels of the hydroperoxide, PGG2, than the pathway involving COX-1. Apart from the lack of anti-inflammatory effect of paracetamol in rheumatoid arthritis, the clinical effects of paracetamol and salicylate are very similar and resemble those of the selective COX-2 inhibitors. A splice variant of COX-1, termed COX-3, may be a site of action of these drugs but, further work, particularly at low concentrations of arachidonic acid is required. We suggest that paracetamol, salicylate and, possibly, the pyrazolone drugs, such as dipyrone, may represent a distinct class of atypical NSAIDs which could be termed peroxide sensitive analgesic and antipyretic drugs (PSAADs).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  • Anderson, B. J., Holford, N. H., Woollard, G. A., et al. (1999). Perioperative pharmacokinetics of acetaminophen analgesia in children, Anesthesiology 90, 411–421.

    PubMed  Google Scholar 

  • Aronoff, D. M., Boutaud, O., Marnett, L. J., et al. (2003). Inhibition of prostaglandin H2 synthases by salicylate is dependent on the oxidative state of the enzymes, J. Pharmacol. Exp. Ther. 304, 589–595.

    PubMed  Google Scholar 

  • Bannwarth, B., Netter, P., Lapicque, F., et al. (1992). Plasma and cerebrospinal fluid concentrations of paracetamol after a single intravenous dose of propacetamol, Br. J. Clin. Pharmacol. 34, 79–81.

    PubMed  Google Scholar 

  • Bianchi Porro, G., Ardizzone, S., Petrillo, M., et al. (1996). Endoscopic assessment of the effects of dipyrone (metamizol) in comparison to paracetamol and placebo on the gastric and duodenal mucosa of healthy adult volunteers, Digestion 57, 186–190.

    PubMed  Google Scholar 

  • Boutaud, O., Aronoff, D. M., Richardson, J. H., et al. (2002). Determinants of the cellular specificity of acetaminophen as an inhibitor of prostaglandin H2 synthases, Proc. Natl. Acad. Sci. USA 99, 7130–7135.

    PubMed  Google Scholar 

  • Brune, K. and Peskar, B. A. (1980). Paracetamol does not potentiate the acetylsalicylate inhibition of prostaglandin release from macrophages, Eur. J. Pharmacol. 68, 365–367.

    PubMed  Google Scholar 

  • Brune, K., Rainsford, K. D., Wagner, K., et al. (1981). Inhibition by anti-inflammatory drugs of prostaglandin production in cultured macrophages, Naunyn-Schmiedeberg's Arch. Pharmacol. 315, 269278.

    Google Scholar 

  • Chandrasekharan, N. V., Dai, H., Roos, K. L., et al. (2002). COX-3, a cyclooxygenase-1 variant inhib-ited by acetaminophen and other analgesic/ antipyretic drugs: cloning, structure, and expression, Proc. Natl. Acad. Sci. USA 99, 13926–13931.

    PubMed  Google Scholar 

  • Cohen, D., Corbin, J., Figueroa, J. P., et al. (1985). Inhibition of arachidonic acid metabolism by antipyrine and 4-aminopyrine, Am. J. Obstet. Gynecol. 153, 589–590.

    PubMed  Google Scholar 

  • Cryer, B. and Feldman, M. (1998). Cyclooxygenase-1 and cycloxygenase-2selectivity of widely used nonsteroidal anti-inflammatory drugs, Am. J. Med. 104, 413–421.

    PubMed  Google Scholar 

  • Fiebich, B. L., Lieb, K., Hull, M., et al. (2000). Effects of caffeine and paracetamol alone or in combination with acetylsalicylic acid on prostaglandin E2 synthesis in rat microglial cells, Neuropharmacology 39, 2205–2213.

    PubMed  Google Scholar 

  • Giuliano, F., Mitchell, J. A. and Warner, T. D. (2001). Sodium salicylate inhibits prostaglandin formation without affecting the induction of cyclooxygenase-2by bacterial liposaccharide in vivo, J. Pharmacol. Exp. Ther. 299, 894900.

    PubMed  Google Scholar 

  • Graham, G. G., Champion, G. D., Day, R. O., et al. (1976). Salicylates in rheumatoid arthritis: pharmacokinetics and analgesic response, Agents Actions Suppl. 1, 37–42.

    Google Scholar 

  • Graham, G. G., Day, R. O., Milligan, M. K., et al. (1999). Current concepts of the actions of paracetamol (acetaminophen) and NSAIDs, Inflammopharmacology 7, 255–263.

    Google Scholar 

  • Graham, G. G., Robins, S.-A., Bryant, K. J., et al. (2001). Inhibition of prostaglandin synthesis in intact cells by paracetamol (acetaminophen), Inflammopharmacology 9, 131142.

    Google Scholar 

  • Greco, A., Ajmone-Cat M. A., Nicolini, A., et al. (2003). Paracetamol effectively reduces prostaglandin E2 synthesis in brain macrophages by inhibiting enzymatic activity of cyclooxy-genase but not phospholipase and prostaglandin E synthase, J. Neurosci. Res. 71, 844–852.

    PubMed  Google Scholar 

  • Landolfi, C., Soldo, L., Polenzani, L., et al. (1998). Inflammatory molecule release by β-amyloid-treated T98G astrocytoma cells: role of prostaglandins and modulation by paracetamol, Eur. J. Pharmacol. 360, 55–64.

    PubMed  Google Scholar 

  • Lanz, R., Polster, P. and Brune, K. (1986). Antipyretic analgesics inhibit prostaglandin release from astrocytes and macrophages similarly, Eur. J. Pharmacol. 130, 105–109.

    PubMed  Google Scholar 

  • Levy, M., Zylber-Katz, E. and Rosenkranz, B. (1995). Clinical pharmacokinetics of dipyrone and its metabolites, Clin. Pharmacokinet. 28, 216–414.

    PubMed  Google Scholar 

  • Malmberg, A. B. and Yaksh, T. L. (1994). Capsaicin-evoked prostaglandin E2 release in spinal cord slices: relative effect of of cyclooxygenase inhibitors, Eur. J. Pharmacol. 271, 293299.

    PubMed  Google Scholar 

  • Mitchell, J. A., Akarasereenont, P., Thiemermann, C., et al. (1994). Selectivity of nonsteroidal antiinflammatory drugs as inhibitors of constitutive and inducible cyclooxygenase, Proc. Natl. Acad. Sci. USA 90, 1169311697.

    Google Scholar 

  • Mitchell, J. A., Saunders, M., Barnes, P. J., et al. (1997). Sodium salicylate inhibits cyclo-oxygenase-2 activity independently of transcription factor (nuclear factor K·B) activation: role of arachidonic acid, Mol. Pharmacol. 51, 907–912.

    PubMed  Google Scholar 

  • Murakami, M., Naraba, H., Tanioka, T., et al. (2000). Regulation of prostaglandin E2 biosynthesis by membrane-associatedprostaglandin E2 synthase that acts in concert with cyclooxygenase-2, J. Biol. Chem. 276, 3278332792.

    Google Scholar 

  • Ouellet, M. and Percival, M. D. (2001). Mechanism of acetaminophen inhibition of cyclooxygenase isoforms, Arch. Biochem. Biophys. 387, 273–280.

    PubMed  Google Scholar 

  • Pelissier, T., Alloui, A., Caussade, F., et al. (1996). Paracetamol exerts a spinal antinociceptive effect involving an indirect interaction with 5-hydroxytryptamine3 receptors: in vivo and in vitro evidence, J. Pharmacol. Exp. Ther. 278, 8–14.

    PubMed  Google Scholar 

  • Riendeau, D., Charleson, S., Cromlish, W., et al. (1997). Comparison of the cyclooxygenase-1 inhibitory properties of nonsteroidal anti-inflammatory drugs (NSAIDs) and selective COX-2 inhibitors, using sensitive microsomal and platelet assays, Can. J. Physiol. Pharmacol. 75, 1088–1095.

    PubMed  Google Scholar 

  • Sandrini, M., Vitale, G. and Pini, L. A. (2002). Effect of rofecoxib on nociception and the serotonin system in the rat brain, Inflamm. Res. 51, 154–159.

    PubMed  Google Scholar 

  • Sciulli, M. G., Seta, F., Tacconelli, S., et al. (2003). Effects of acetaminophen on constitutive and inducible prostanoid biosynthesis in human blood cells, Br. J. Pharmacol. 138, 634–641.

    PubMed  Google Scholar 

  • Shen, J., Wanwimolruk, S., Purves, R. D., et al. (1991). Model representation of salicylate pharma-cokinetics using unbound plasma salicylate concentrations and metabolite urinary excretion rates following a single oral dose, J. Pharmacokinet. Biopharm. 19, 575–595.

    PubMed  Google Scholar 

  • Simmons, D. L., Botting, R. M., Robertson, P. M., et al. (1999). Induction of an acetaminophen-sensitive cyclooxygenase with reduced sensitivity to non-steroid antiinflammatory drugs, Proc. Natl. Acad. Sci. USA 96, 3275–3280.

    PubMed  Google Scholar 

  • Smith, W. L. and Song, I. (2002). The enzymology of prostaglandin endoperoxide H synthases-1 and –2, Prostagland Lipid Med. 68–69, 115–128.

    Google Scholar 

  • Szczeklik, A., Gryglewski, R. J. and Czerniawska-Mysik, G. (1977). Clinical patterns of hypersensi-tivity to nonsteroidal anti-inflammmatory drugs and their pathogenesis, J. Allergy Clin. Immunol. 60, 276–284.

    PubMed  Google Scholar 

  • Vane, J. R. (1971). Inhibition of prostaglandin synthesis as a mechanismfor aspirin-like drugs, Nature New Biol. 66, 232–235.

    Google Scholar 

  • Warner, T. D., Giuliano, F., Vojnovic, I., et al. (1999). Nonsteroid drug selectivities for cyclo-oxygenase-1 rather than cyclo-oxygenase-2 are associated with human gastrointestinal toxicity: A full in vitro analysis, Proc. Natl. Acad. Sci. USA 96, 7563–7568.

    PubMed  Google Scholar 

  • Weithmann, K. U. and Alpermann, H.-G. (1985). Biochemical and pharmacological effects of dipyrone and its metabolites in model systems related to arachidonic acid cascade, Arzneim. Forsch. 35, 947–952.

    Google Scholar 

  • Wu, K. K., Sanduja, R., Tsai, A.-L., et al. (1991). Aspirin inhibits interleukin-1 prostaglandin H synthase expression in cultured endothelial cells, Proc. Natl. Acad. Sci. USA 88, 2384–2387.

    PubMed  Google Scholar 

  • Xu, M. M., Sansores-Garcia, L. and Chen, X. M. (1999). Suppression of inducible cyclooxygenase 2 gene transcription by aspirin and sodium salicylate, Proc. Natl. Acad. Sci. USA 96, 5292–5297.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Graham, G.G., Scott, K.F. Mechanisms of action of paracetamol and related analgesics. Inflammopharmacology 11, 401–413 (2003). https://doi.org/10.1163/156856003322699573

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1163/156856003322699573

Navigation