Skip to main content
Log in

Comparison of Boltzmann and Gibbs entropies for the analysis of single-chain phase transitions

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

In the last 10 years, flat histogram Monte Carlo simulations have contributed strongly to our understanding of the phase behavior of simple generic models of polymers. These simulations result in an estimate for the density of states of a model system. To connect this result with thermodynamics, one has to relate the density of states to the microcanonical entropy. In a series of publications, Dunkel, Hilbert and Hänggi argued that it would lead to a more consistent thermodynamic description of small systems, when one uses the Gibbs definition of entropy instead of the Boltzmann one. The latter is the logarithm of the density of states at a certain energy, the former is the logarithm of the integral of the density of states over all energies smaller than or equal to this energy. We will compare the predictions using these two definitions for two polymer models, a coarse-grained model of a flexible-semiflexible multiblock copolymer and a coarse-grained model of the protein poly-alanine. Additionally, it is important to note that while Monte Carlo techniques are normally concerned with the configurational energy only, the microcanonical ensemble is defined for the complete energy. We will show how taking the kinetic energy into account alters the predictions from the analysis. Finally, the microcanonical ensemble is supposed to represent a closed mechanical N-particle system. But due to Galilei invariance such a system has two additional conservation laws, in general: momentum and angular momentum. We will also show, how taking these conservation laws into account alters the results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.A. Berg, Fields Inst. Comm. 26, 1 (2000)

    Google Scholar 

  2. B.A. Berg, Comp. Phys. Comm. 147, 52 (2002)

    Article  ADS  Google Scholar 

  3. W. Janke, Physica A 254, 164 (1998)

    Article  ADS  Google Scholar 

  4. W. Janke, Lect. Notes Phys. 739, 79 (2008)

    Article  ADS  Google Scholar 

  5. F. Wang, D.P. Landau, Phys. Rev. Lett. 86, 2050 (2001)

    Article  ADS  Google Scholar 

  6. F. Wang, D.P. Landau, Phys. Rev. E 64, 056101 (2001)

    Article  ADS  Google Scholar 

  7. T. Wuest, Y.W. Li, D.P. Landau, J. Stat. Phys. 144, 638 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  8. F. Liang, J. Stat. Phys. 122, 511 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  9. F. Liang, C. Liu, R.J. Carroll, J. Amer. Stat. Ass. 102, 305 (2007)

    Article  Google Scholar 

  10. F. Liang, Statist. Prob. Lett. 79, 581 (2009)

    Article  Google Scholar 

  11. D.H.E. Gross, Microcanonical Thermodynamics: Phase Transitions in “Small” Systems (World Scientific, Singapore, 2001)

  12. C. Junghans, M. Bachmann, W. Janke, Phys. Rev. Lett. 97, 218103 (2006)

    Article  ADS  Google Scholar 

  13. W. Janke, Nucl. Phys. B (Proc. Suppl.) 63A-C, 631 (1998)

    Article  ADS  Google Scholar 

  14. W. Paul, F. Rampf, T. Strauch, K. Binder, Comp. Phys. Commun. 178, 17 (2008)

    Article  ADS  Google Scholar 

  15. W. Janke, W. Paul, Soft Matter 12, 642 (2016)

    Article  ADS  Google Scholar 

  16. R.S. Ellis, Entropy, Large Deviations and Statistical Mechanics (Springer, Berlin, 2006)

  17. H. Touchette, Phys. Rep. 478, 1 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  18. P. Hertz, Ann. Phys. 33, 225 (1910)

    Article  Google Scholar 

  19. P. Hertz, Ann. Phys. 33, 537 (1910)

    Article  Google Scholar 

  20. J.W. Gibbs, Elementary principles of statistical mechanics (Charles Scribner's Sons, New York, 1902)

  21. J. Dunkel, S. Hilbert, Physica A 370, 390 (2006)

    Article  ADS  Google Scholar 

  22. S. Hilbert, J. Dunkel, Phys. Rev. E 74, 011120 (2006)

    Article  ADS  Google Scholar 

  23. J. Dunkel, S. Hilbert, Nature Phys. 10, 67 (2014)

    Article  ADS  Google Scholar 

  24. S. Hilbert, P. Hänggi, J. Dunkel, Phys. Rev. E 90, 062116 (2014)

    Article  ADS  Google Scholar 

  25. P. Hänggi, S. Hilbert, J. Dunkel, Phil. Trans. Roy. Soc. A 374, 20150039 (2016)

    Article  Google Scholar 

  26. R.H. Swendsen, J.S. Wang, Phys. Rev. E 92, 020103 (2015)

    Article  ADS  Google Scholar 

  27. D. Frenkel, P. Warren, Am. J. Phys. 83, 163 (2015)

    Article  ADS  Google Scholar 

  28. P. Ehrenfest, Phil. Mag. 23, 500 (1917)

    Article  Google Scholar 

  29. T. Levi-Civita, Abhandl. Mathem. Semin. Hamburg 6, 323 (1928)

    Article  Google Scholar 

  30. A.I. Khinchin, Mathematical Foundations of Statistical Mechanics (Dover Publications, New York, 1949)

  31. V.L. Berdichevskii, J. Appl. Math. Mech. 52, 738 (1988)

    Article  MathSciNet  Google Scholar 

  32. P. Schierz, J. Zierenberg, W. Janke, J. Chem. Phys. 143, 134114 (2015)

    Article  ADS  Google Scholar 

  33. P. Schierz, J. Zierenberg, W. Janke, Phys. Rev E 94, 021301(R) (2016)

    Article  ADS  Google Scholar 

  34. S.V. Zablotskiy, J.A. Martemyanova, V.A. Ivanov, W. Paul, J. Chem. Phys. 144, 244903 (2016)

    Article  ADS  Google Scholar 

  35. S.V. Zablotskiy, V.A. Ivanov, W. Paul, Phys. Rev. E 93, 063303 (2016)

    Article  ADS  Google Scholar 

  36. S.V. Zablotskiy, J.A. Martemyanova, V.A. Ivanov, W. Paul, Polym. Sci. Ser. A 58, 899 (2016)

    Article  Google Scholar 

  37. M. Cheon, I. Chang, C.K. Hall, Proteins: Struct. Funct. Bioinf. 78, 2950 (2010)

    Article  Google Scholar 

  38. A. Voegler Smith, C.K. Hall, Proteins: Struct. Funct. Bioinf. 44, 344 (2001)

    Article  Google Scholar 

  39. B. Werlich, M.P. Taylor, W. Paul, Phys. Proc. 57, 82 (2014)

    Article  ADS  Google Scholar 

  40. B. Werlich, T. Shakirov, M.P. Taylor, W. Paul, Comp. Phys. Commun. 186, 65 (2015)

    Article  ADS  Google Scholar 

  41. S. Schnabel, D.T. Seaton, D.P. Landau, M. Bachmann, Phys. Rev. E 84, 011127 (2011)

    Article  ADS  Google Scholar 

  42. J. Zierenberg, W. Janke, Phys. Rev. E 92, 012134 (2015)

    Article  ADS  Google Scholar 

  43. M.P. Taylor, K. Isik, J. Luettmer-Strathmann, Phys. Rev. E 78, 051805 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  44. V. Sadovnichy, A. Tikhonravov, V. Voevodin, V. Opanasenko, in “Contemporary High Performance Computing: From Petascale toward Exascale” (Chapman & Hall/CRC Computational Science, Boca Raton, USA, CRC Press, 2013), pp. 283–307

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Paul.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shakirov, T., Zablotskiy, S., Böker, A. et al. Comparison of Boltzmann and Gibbs entropies for the analysis of single-chain phase transitions. Eur. Phys. J. Spec. Top. 226, 705–723 (2017). https://doi.org/10.1140/epjst/e2016-60326-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2016-60326-1

Navigation