Skip to main content
Log in

Studying PMMA films on silica surfaces with generic microscopic and mesoscale models

  • Regular Article
  • Methodological Aspects of Coarse Graining
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Polymer films on solid substrates present significant interest for fundamental polymer physics and industrial applications. For their mesoscale study, we develop a hybrid particle-based representation where polymers are modeled as worm-like chains and non-bonded interactions are introduced through a simple density functional. The mesoscale description is parameterized to match a generic microscopic model, which nevertheless can represent real materials. Choosing poly (methyl methacrylate) adsorbed on silica as a case study, the consistency of both models in describing conformational and structural properties in polymer films is investigated. We compare selected quantifiers of chain-shape, the structure of the adsorbed layer, as well as the statistics of loops, tails, and trains. Overall, the models are found to be consistent with each other. Some deviations in conformations and structure of adsorbed layer can be attributed to the simplified description of polymer/surface interactions and local liquid packing in the mesoscale model. These results are encouraging for a future development of pseudo-dynamical schemes, parameterizing the kinetics in the hybrid model via the dynamics of the generic microscopic model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.G. de Gennes, Macromolecules 14, 1637 (1981)

    Article  ADS  Google Scholar 

  2. P.G. de Gennes, Scaling Concepts in Polymer Physics (Cornell University Press, Ithaca, 1979)

  3. I.C. Sanchez (ed.), Physics of Polymer Surfaces and Interfaces (Butterworth-Heineman, 1992)

  4. G.J. Fleer, M.A. Cohen Stuart, J.M.H.M. Scheutjens, T. Cosgrove, B. Vincent, Polymers at Interfaces (Chapman and Hall, London, 1993)

  5. R.A.L. Jones, R.W. Richards, Polymers at Surfaces and Interfaces (Cambridge University Press, 1999)

  6. E. Eisenriegler, Polymers Near Surfaces (World Scientific, Singapore, 1993)

  7. M.M. Denn, Annu. Rev. Fluid Mech. 33, 265 (2001)

    Article  ADS  Google Scholar 

  8. C.N. Hoth, P. Schilinsky, S.A. Choulis, S. Balasubramanian, C.J. Brabec, Applications of Organic and Printed Electronics (Springer, 2013)

  9. B. Weng, R.L. Shepherd, K. Crowley, A.J. Killard, G.G. Wallace, Analyst 135, 2779 (2010)

    Article  ADS  Google Scholar 

  10. B. Derby, Annu. Rev. Mater. Res. 40, 395 (2010)

    Article  ADS  Google Scholar 

  11. M. Doi, S.F. Edwards, The Theory of Polymer Dynamics (Oxford University Press, Oxford, 2013)

  12. W.G. Noid, J. Chem. Phys. 139, 090901 (2013)

    Article  ADS  Google Scholar 

  13. M. Müller, J. Stat. Phys. 145, 967 (2011)

    Article  ADS  Google Scholar 

  14. J.T. Padding, W.J. Briels, J. Phys.: Condens. Matter 23, 233101 (2011)

    ADS  Google Scholar 

  15. S.H.L. Klapp, D.J. Diestler, M.M. Schoen, J. Phys.: Condens. Matter 16, 7331 (2004)

    ADS  Google Scholar 

  16. M. Guenza, J. Phys.: Condens. Matter 20, 033101 (2008)

    ADS  Google Scholar 

  17. K. Kremer, Eur. Phys. J. B 64, 525 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  18. M. Laradji, H. Guo, M.J. Zuckermann, Phys. Rev. E 49, 3199 (1994)

    Article  ADS  Google Scholar 

  19. I. Pagonabarraga, D. Frenkel, J. Chem. Phys. 115, 5015 (2001)

    Article  ADS  Google Scholar 

  20. S.Y. Trofimov, E.L.F. Nies, M.A.J. Michels, J. Chem. Phys. 117, 9383 (2002)

    Article  ADS  Google Scholar 

  21. K.C. Daoulas, M. Müller, J. Chem. Phys. 125, 184904 (2006)

    Article  ADS  Google Scholar 

  22. D.Q. Pike, F.A. Detcheverry, M. Müller, J.J. de Pablo, J. Chem. Phys. 131, 084903 (2009)

    Article  ADS  Google Scholar 

  23. T. Vettorel, G. Besold, K. Kremer, Soft Matter 6, 2282 (2010)

    Article  ADS  Google Scholar 

  24. G. Zhang, K.C. Daoulas, K. Kremer, Macromol. Chem. Phys. 214, 214 (2013)

    Article  Google Scholar 

  25. K.C. Daoulas, V. Rühle, K. Kremer, J. Phys.-Condens. Mat. 24, 284121 (2012)

    Article  Google Scholar 

  26. E. Helfand, A.M. Sapse, J. Chem. Phys. 62, 1327 (1975)

    Article  ADS  Google Scholar 

  27. C.C. Hua, J.D. Schieber, J. Chem. Phys. 109, 10018 (1998)

    Article  ADS  Google Scholar 

  28. Y. Masubuchi, J.I. Takimoto, K. Koyama, G. Ianniruberto, G. Marrucci, F. Greco, J. Chem. Phys. 115, 4387 (2001)

    Article  ADS  Google Scholar 

  29. A.E. Likhtman, J. Chem. Phys. 38, 6128 (2005)

    Google Scholar 

  30. V.C. Chappa, D.C. Morse, A. Zippelius, Marcus Müller, Phys. Rev. Lett. 109, 148302 (2012)

    Article  ADS  Google Scholar 

  31. C. Peter, K. Kremer, Soft Matter 5, 4357 (2009)

    Article  ADS  Google Scholar 

  32. K. Kremer, G.S. Grest, J. Chem. Phys. 92, 5057 (1990)

    Article  ADS  Google Scholar 

  33. M. Tsige, G.S. Grest, Macromolecules 37, 4333 (2004)

    Article  ADS  Google Scholar 

  34. S. Peter, H. Meyer, J. Baschnagel, J. Chem. Phys. 131, 014903 (2009)

    Article  ADS  Google Scholar 

  35. D. Mukherji, C.M. Marques, K. Kremer, Nat. Commun. 5, 4882 (2015)

    Article  Google Scholar 

  36. D. Mukherji, C.M. Marques, T. Stuehn, K. Kremer (submitted)

  37. P. Scharfer, G. Hernandez-Sosa, Karlsruhe Institute of Technology (private communication)

  38. K.G. Soga, M.J. Zuckermann, H. Guo, Macromolecules 29, 1998 (1996)

    Article  ADS  Google Scholar 

  39. K.C. Daoulas, M. Müller, Adv. Polym. Sci. 224, 197 (2010)

    Google Scholar 

  40. K.C. Daoulas, D.N. Theodorou, V.A. Harmandaris, N.C. Karayiannis, V.G. Mavrantzas, Macromolecules 38, 7134 (2005)

    Article  ADS  Google Scholar 

  41. J.E. Mark (ed.), Physical Properties of Polymers Handbook (Springer, 2007)

  42. L.A. Moreira, G. Zhang, F. Müller, T. Stuehn, K. Kremer, Macromol. Theory Simul. 24, 419 (2015)

    Article  Google Scholar 

  43. R. Everaers, S.K. Sukumaran, G.S. Grest, C. Svaneborg, A. Sivasubramanian, K. Kremer, Science 303, 823 (2004)

    Article  ADS  Google Scholar 

  44. A.C. Costa, M. Geoghegan, P. Vlcek, R.J. Composto, Macromolecules 36, 9897 (2003)

    Article  ADS  Google Scholar 

  45. J.D. Halverson, T. Brandes, O. Lenz, A. Arnold, S. Bevc, V. Starchenko, K. Kremer, T. Stuehn, D. Reith, Comput. Phys. Commun. 184, 1129 (2013)

    Article  ADS  Google Scholar 

  46. P. Gemünden, K.C. Daoulas, Soft Matter 11, 532 (2015)

    Article  Google Scholar 

  47. L. Livandaru, R.R. Netz, H.J. Kreuzer, Macromolecules 36, 3732 (2003)

    Article  ADS  Google Scholar 

  48. M. Rubinstein, R.H. Golby, Polymer Physics (Oxford University Press, Oxford, 2003)

  49. M. Hömberg, M. Müller, J. Chem. Phys. 132, 155104 (2010)

    Article  ADS  Google Scholar 

  50. M. Müller, G.D. Smith, J. Polym. Sci. Pol. Phys. 43, 934 (2005)

    Article  Google Scholar 

  51. D.T. Wu, G.H. Fredrickson, J.P. Carton, A. Ajdari, L. Leibler, J. Polym. Sci. Pol. Phys. 33, 2373 (1995)

    Article  ADS  Google Scholar 

  52. J.W. Eastwood, R.W. Hocknew, D.N. Lowrence, Comput. Phys. Commun. 19, 215 (1980)

    Article  ADS  Google Scholar 

  53. M. Deserno, C. Holm, J. Chem. Phys. 128, 184105 (1998)

    Google Scholar 

  54. R. Auhl, R. Everaers, G.S. Grest, K. Kremer, S.J. Plimpton, J. Chem. Phys. 119, 12718 (2003)

    Article  ADS  Google Scholar 

  55. J.M.H.M. Scheutjens, G.J. Fleer, J. Phys. Chem. 83, 1619 (1979)

    Article  Google Scholar 

  56. J.M.H.M. Scheutjens, G.J. Fleer, J. Phys. Chem. 84, 178 (1980)

    Article  Google Scholar 

  57. J.M. Cahn, J.E. Hilliard, J. Chem. Phys. 28, 258 (1958)

    Article  ADS  Google Scholar 

  58. I.M. Lifshitz, A.Y. Grosberg, A.R. Khokhlov, Rev. Mod. Phys. 50, 683 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  59. M. Müller, L.G. MacDowell, Macromolecules 33, 3902 (2000)

    Article  ADS  Google Scholar 

  60. A.J.M. Yang, P.D. Fleming, J.H. Gibbs, J. Chem. Phys. 64, 3732 (1976)

    Article  ADS  Google Scholar 

  61. R. Evans, Adv. Phys. 28, 143 (1979)

    Article  ADS  Google Scholar 

  62. J.S. Rowlinson, B. Widom, Molecular Theory of Capillarity (Oxford University Press, Oxford, 1984)

  63. S. Wu, J. Phys. Chem. 74, 632 (1970)

    Article  Google Scholar 

  64. P. Cifra, E. Nies, F.E. Karasz, Macromolecules 27, 1166 (1994)

    Article  ADS  Google Scholar 

  65. K.F. Mansfield, D.N. Theodorou, Macromolecules 23, 4430 (1990)

    Article  ADS  Google Scholar 

  66. I.A. Bitsanis, G. ten Brinke, J. Chem. Phys. 99, 3100 (1993)

    Article  ADS  Google Scholar 

  67. D.N. Theodorou, Macromolecules 21, 1411 (1988)

    Article  ADS  Google Scholar 

  68. D. Mukherji, G. Bartels, M.H. Müser, Phys. Rev. Lett. 100, 068301 (2008)

    Article  ADS  Google Scholar 

  69. A. Cavallo, M. Müller, K. Binder, J. Phys. Chem. B 109, 6544 (2005)

    Article  Google Scholar 

  70. M. Müller, J. Chem. Phys. 116, 9930 (2002)

    Article  ADS  Google Scholar 

  71. H. Meyer, N. Schulmann, J.E. Zabel, J.P. Wittmer, Comput. Phys. Commun. 182, 1949 (2011)

    Article  ADS  Google Scholar 

  72. C.A.J. Hoeve, E.A. DiMarzio, P. Peyser, J. Chem. Phys. 42, 2558 (1965)

    Article  ADS  Google Scholar 

  73. J. Sarabadani, A. Milchev, T.A. Vilgis, J. Chem. Phys. 141, 044907 (2014)

    Article  ADS  Google Scholar 

  74. M. Müller, B. Steinmüller, K.C. Daoulas, A. Ramirez-Hernandez, J.J. de Pablo, Phys. Chem. Chem. Phys. 13, 10491 (2011)

    Article  Google Scholar 

  75. M.H. Müser, M. Müller, J. Chem. Phys. 142, 174105 (2015)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K.Ch. Daoulas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Mukherji, D. & Daoulas, K. Studying PMMA films on silica surfaces with generic microscopic and mesoscale models. Eur. Phys. J. Spec. Top. 225, 1423–1440 (2016). https://doi.org/10.1140/epjst/e2016-60155-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2016-60155-2

Navigation