Skip to main content
Log in

Thermodynamic translational invariance in concurrent multiscale simulations of liquids

  • Regular Article
  • Hybrid and Adaptive Coarse Graining Methods
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

AdResS multi scale simulations of liquid systems allow for a free exchange of particles between regions, where their interactions are described by different models. The desired “model coexistence” is somewhat reminiscent of phase-coexistence. But while the latter describes heterogeneous systems with position-independent interactions, AdResS is meant to generate homogeneous systems with position-dependent interactions. Here we formulate the bulk equilibrium conditions for model coexistence, discuss the connection between the Hamiltonian H-AdResS scheme and widely used free energy methods based on the Kirkwood coupling parameter method of thermodynamic integration, and point out the relation between thermodynamic corrections in AdResS simulations and tail corrections for truncated long-range potentials. In particular, we use the analogy to derive expressions for the form of the correction profiles in narrow transition zones, which cannot be fully described by the local coupling parameter approximation. Finally, we illustrate how to treat transient mergers of small, diffusing all atom zones attached to reference particles in dynamic AdResS simulations without additional calibrations beyond the initial parameterization of the correction profile for individual all atom zones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R.E. Rudd, J.Q. Broughton, Phys. Stat. Solidi B-basic Res. 217, 251 (2000)

    Article  ADS  Google Scholar 

  2. J. Rottler, S. Barsky, M.O. Robbins, Phys. Rev. Lett. 89, 148304 (2002)

    Article  ADS  Google Scholar 

  3. A. Warshel, M. Levitt, J. Mol. Biol. 103, 227 (1976)

    Article  Google Scholar 

  4. M. Svensson, S. Humbel, R.D.J. Froese, T. Matsubara, S. Sieber, K. Morokuma, J. Phys. Chem. 100, 19357 (1996)

    Article  Google Scholar 

  5. G. Csanyi, T. Albaret, M.C. Payne, A.D. Vita, Phys. Rev. Lett. 93, 175503 (2004)

    Article  ADS  Google Scholar 

  6. G. Lu, E.B. Tadmor, E. Kaxiras, Phys. Rev. B 73, 024108 (2006)

    Article  ADS  Google Scholar 

  7. M. Praprotnik, L.D. Site, K. Kremer, J. Chem. Phys. 123, 224106 (2005)

    Article  ADS  Google Scholar 

  8. M. Praprotnik, L.D. Site, K. Kremer, Phys. Rev. E 73, 066701 (2006)

    Article  ADS  Google Scholar 

  9. M. Praprotnik, L.D. Site, K. Kremer, J. Chem. Phys. 126, 134902 (2007)

    Article  ADS  Google Scholar 

  10. B. Ensing, S.O. Nielsen, P.B. Moore, M.L. Klein, M. Parrinello, J. Chem. Theo. Comput. 3, 1100 (2007)

    Article  Google Scholar 

  11. R. Potestio, S. Fritsch, P. Espanol, R. Delgado-Buscalioni, K. Kremer, R. Everaers, D. Donadio, Phys. Rev. Lett. 110, 108301 (2013)

    Article  ADS  Google Scholar 

  12. R. Potestio, P. Espanol, R. Delgado-Buscalioni, R. Everaers, K. Kremer, D. Donadio, Phys. Rev. Lett. 111, 060601 (2013)

    Article  ADS  Google Scholar 

  13. D. Ruelle, Thermodynamic Formalism: The Mathematical Structures of Equilibrium Statistical Mechanics, 2nd edn. (Cambridge University Press, Cambridge, UK, 2004)

  14. J.G. Kirkwood, J. Chem. Phys. 3, 300 (1935)

    Article  ADS  Google Scholar 

  15. H.B. Callen, Thermodynamics and an Introduction to Thermostatistics, 2nd edn. (John Wiley & Sons, US, 1985)

  16. P. Espanol, R. Delgado-Buscalioni, R. Everaers, R. Potestio, D. Donadio, K. Kremer, J. Chem. Phys. 142, 064115 (2015)

    Article  ADS  Google Scholar 

  17. S. Fritsch, S. Poblete, C. Junghans, G. Ciccotti, L.D. Site, K. Kremer, Phys. Rev. Lett. 108, 170602 (2012)

    Article  ADS  Google Scholar 

  18. F. Ercolessi, J.B. Adams, Europhysics Lett. 26, 583 (1994)

    Article  ADS  Google Scholar 

  19. A.P. Lyubartsev, A. Laaksonen, Phys. Rev. E 52, 3730 (1995)

    Article  ADS  Google Scholar 

  20. D. Reith, M. Putz, F. Muller-Plathe, J. Computational Chem. 24, 1624 (2003)

    Article  Google Scholar 

  21. W.G. Noid, J.W. Chu, G.S. Ayton, V. Krishna, S. Izvekov, G.A. Voth, A. Das, H.C. Andersen, J. Chem. Phys. 128, 244114 (2008)

    Article  ADS  Google Scholar 

  22. V. Ruhle, C. Junghans, A. Lukyanov, K. Kremer, D. Andrienko, J. Chem. Theo. Comput. 5, 3211 (2009)

    Article  Google Scholar 

  23. J.-P. Hansen, I.R. McDonald (ed.), Theory of Simple Liquids, 3rd edn. (Academic Press, London, 2006)

  24. D. Frenkel, B. Smit (ed.), Understanding Molecular Simulation, 2nd edn. (Academic Press, San Diego, 2002)

  25. M. Allen, D. Tildesley, Computer Simulation of Liquids (Oxford: Clarendon Pr, 1987)

  26. C. Chipot, A.P. Edts (ed.), Free Energy Calculations: Theory and Applications in Chemistry and Biology (Springer, Berlin Heidelberg, 2007)

  27. L.A. Rowley, D. Nicholson, N.G. Parsonage, J. Computational Phys. 26, 66 (1978)

    Article  ADS  Google Scholar 

  28. H. Wang, C. Hartmann, C. Schutte, L.D. Site, Phys. Rev. X 3, 011018 (2013)

    Google Scholar 

  29. A. Agarwal, J.L. Zhu, C. Hartmann, H. Wang, L.D. Site, New J. Phys. 17, 083042 (2015)

    Article  ADS  Google Scholar 

  30. L.D. Site, Phys. Rev. E 93, 022130 (2016)

    Article  ADS  Google Scholar 

  31. U.H.E. Hansmann, Chem. Phys. Lett. 281, 140 (1997)

    Article  ADS  Google Scholar 

  32. Y. Sugita, Y. Okamoto, Chem. Phys. Lett. 314, 141 (1999)

    Article  ADS  Google Scholar 

  33. Y. Sugita, A. Kitao, Y. Okamoto, J. Chem. Phys. 113, 6042 (2000)

    Article  ADS  Google Scholar 

  34. H. Fukunishi, O. Watanabe, S. Takada, J. Chem. Phys. 116, 9058 (2002)

    Article  ADS  Google Scholar 

  35. C.J. Woods, J.W. Essex, M.A. King, J. Phys. Chem. B 107, 13703 (2003)

    Article  Google Scholar 

  36. T. Okabe, M. Kawata, Y. Okamoto, M. Mikami, Chem. Phys. Lett. 335, 435 (2001)

    Article  ADS  Google Scholar 

  37. Q.L. Yan, J.J. de Pablo, J. Chem. Phys. 111, 9509 (1999)

    Article  ADS  Google Scholar 

  38. L.D. Site, Phys. Rev. E 76, 047701 (2007)

    Article  ADS  Google Scholar 

  39. S. Poblete, M. Praprotnik, K. Kremer, L.D. Site, J. Chem. Phys. 132, 114101 (2010)

    Article  ADS  Google Scholar 

  40. E.M. Blokhuis, D. Bedeaux, C.D. Holcomb, J.A. Zollweg, Mol. Phys. 85, 665 (1995)

    Article  ADS  Google Scholar 

  41. M.X. Guo, B.C.Y. Lu, J. Chem. Phys. 106, 3688 (1997)

    Article  ADS  Google Scholar 

  42. F. Siperstein, A.L. Myers, O. Talu, Mol. Phys. 100, 2025 (2002)

    Article  ADS  Google Scholar 

  43. K.C. Daoulas, V.A. Harmandaris, V.G. Mavrantzas, Macromolecules 38, 5780 (2005)

    Article  ADS  Google Scholar 

  44. J. Janecek, J. Phys. Chem. B. 110, 6264 (2006)

    Article  Google Scholar 

  45. J.M. Miguez, M.M. Pineiro, F.J. Blas, J. Chem. Phys. 138, 034707 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Everaers.

Electronic supplementary material

Supplementary file supplied by authors.

PDF file

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Everaers, R. Thermodynamic translational invariance in concurrent multiscale simulations of liquids. Eur. Phys. J. Spec. Top. 225, 1483–1503 (2016). https://doi.org/10.1140/epjst/e2016-60153-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2016-60153-4

Navigation