Skip to main content
Log in

A van der Waals density functional theory study of poly(vinylidene difluoride) crystalline phases

  • Regular Article
  • Specific Models to Tackle Fundamental Questions
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Ferroelectric polymers, such as poly(vinylidene difluoride) (PVDF), have many potential applications in flexible electronic devices. PVDF has six experimentally observed polymorphs, three of which are ferroelectric. In this work we use density functional theory to investigate the structural properties, energetics and polarisation of the stable α-phase, its ferroelectric analogue, the δ-phase, and the β-phase, which has the best ferroelectric properties. The results from a variety of exchange and correlation functionals were compared and it was found that van der Waals (vdW) interactions have an important effect on the calculated crystal structures and energetics, with the vdW-DF functional giving the best agreement with experimental lattice parameters. The spontaneous polarisation was found to strongly correlate with the unit cell volumes, which depend on the functional used. While the relative phase energies were not strongly dependent on the functional, the cohesive energies were significantly underestimated using the PBE functional. The inclusion of vdW interactions is, therefore, important to obtain the correct lattice structures, polarisation and energetics of PVDF polymorphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.F. Scott, Science 315, 954 (2007)

    Article  ADS  Google Scholar 

  2. T. Someya, Y. Kato, T. Sekitani, S. Iba, Y. Noguchi, Y. Murase, H. Kawaguchi, T. Sakurai, PNAS 102, 12321 (2005)

    Article  ADS  Google Scholar 

  3. V. Cauda, G. Canavese, S. Stassi, J. Appl. Poly. Sci., 41667 (2015)

  4. M. Poulsen, S. Ducharme, IEEE Trans. Dielectr. Electr. Insul. 17, 1028 (2010)

    Article  Google Scholar 

  5. M. Bachmann, W.L. Gordon, S. Weinhold, J.B. Lando, J. Appl. Phys. 51, 5095 (1980)

    Article  ADS  Google Scholar 

  6. M. Li, H.J. Wondergem, M.-J. Spijkman, K. Asadi, I. Katsouras, P.W.M. Blom, D.M. de Leeuw, Nat. Mater. 12, 433 (2013)

    Article  ADS  Google Scholar 

  7. R. Gregorio Jr., E.M. Ueno, J. Mat. Sci. 34, 4489 (1999)

    Article  ADS  Google Scholar 

  8. S.M. Nakhmanson, M.B. Nardelli, J. Bernholc. Phys. Rev. Lett. 92, 115504 (2004)

    Article  ADS  Google Scholar 

  9. S.M. Nakhmanson, M.B. Nardelli, J. Bernholc. Phys. Rev. B 72, 115210 (2005)

    Article  ADS  Google Scholar 

  10. H. Su, A. Strachan, W.A. Phys. Rev. B 70, 064101 (2004)

    Article  ADS  Google Scholar 

  11. V. Ranjan, L. Yu, Phys. Rev. Lett. 99, 047801 (2007)

    Article  ADS  Google Scholar 

  12. W. Wang, H. Fan, Y. Ye, Polymer 51, 3575 (2010)

    Article  Google Scholar 

  13. Y. Pei, X.C. Zeng, J. Appl. Phys. 109, 093514 (2011)

    Article  ADS  Google Scholar 

  14. J.C. Li, R.Q. Zhang, C.L. Wang, N.B. Wong, Phys. Rev. B 75, 155408 (2007)

    Article  ADS  Google Scholar 

  15. N.J. Ramer, C.M. Raynor, K.A. Stiso, Polymer 47, 424 (2006)

    Article  Google Scholar 

  16. N.J. Ramer, T. Marrone, K.A. Stiso, Polymer 47, 7160 (2006)

    Article  Google Scholar 

  17. S.M. Nakhmanson, R. Korlacki, J.T. Johnston, S. Ducharme, Z. Ge, J.M. Takacs, Phys. Rev. B 81, 174120 (2010)

    Article  ADS  Google Scholar 

  18. J. Kleis, B.I. Lundqvist, D.C. Langreth, E. Schröder, Phys. Rev. B 76, 100201(R) (2007)

    Article  ADS  Google Scholar 

  19. S. Grimme J. Comput. Chem. 27, 1787 (2006)

    Article  Google Scholar 

  20. M. Dion, H. Rydberg, E. Schröder, D.C. Langreth, B.I. Lundqvist, Phys. Rev. Lett. 92, 246401 (2004)

    Article  ADS  Google Scholar 

  21. K. Lee, E.D. Murray, L. Kong, B.I. Lundqvist, D.C. Langreth, Phys. Rev. B 82, 081101(R) (2010)

    Article  ADS  Google Scholar 

  22. P. Giannozzi, S. Baroni, N. Bonini, et al., J. Phys. Condens. Matter 21, 395502 (2009)

    Article  Google Scholar 

  23. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  24. T. Thonhauser, V.R. Cooper, S. Li, A. Puzder, P. Hyldgaard, D.C. Langreth, Phys. Rev. B 76, 125112 (2007)

    Article  ADS  Google Scholar 

  25. R. Sabatini, E. Kucukbenli, B. Kolb, T. Thonhauser, S. de Gironcoli, J. Phys.: Condens. Matter 24, 424209 (2012)

    ADS  Google Scholar 

  26. R.D. King-Smith, D. Vanderbilt, Phys. Rev. B 47, 1651 (1993)

    Article  ADS  Google Scholar 

  27. R. Resta, Rev. Mod. Phys. 66, 899 (1994)

    Article  ADS  Google Scholar 

  28. M. Kobayashi, K. Tashiro, H. Tadokoro, Macromol. 8, 158 (1974)

    Article  ADS  Google Scholar 

  29. R. Hasegawa, Y. Takahashi, Y. Chatani, H. Tadokoro, Polymer J. 3, 600 (1972)

    Article  Google Scholar 

  30. Y. Takahashi, H. Tadokoro, Macromol. 16(12), 1880 (1983)

    Article  ADS  Google Scholar 

  31. A. Itoh, Y. Takahashi, T. Furukawa, H. Yajima, Polymer J. 46, 207 (2014)

    Article  Google Scholar 

  32. W.J. Kim, M.H. Han, Y.-H. Shin, H. Kim, E.K. Lee, J. Phys. Chem. B (2016)

  33. F.W. Billmeyer Jr., J. Appl. Phys. 28, 1114 (1957)

    Article  ADS  Google Scholar 

  34. N.A. Spaldin, J. Solid. State. Chem. 195, 2 (2012)

    Article  ADS  Google Scholar 

  35. J.E. McKinney, G.T. Davis, M.G. Broadhurst, J. Appl. Phys. 51, 1676 (1980)

    Article  ADS  Google Scholar 

  36. K. Nakamura, M. Nagai, T. Kanamoto, Y. Takahashi, T. Furukawa, J. Polymer Science Part B: Polymer Physics 39(12), 1371 (2001)

    Article  ADS  Google Scholar 

  37. K. Noda, K. Ishida, A. Kubono, T. Horiuchi, H. Yamada, K. Matsushige, J. Appl. Phys. 93, 2866 (2003)

    Article  ADS  Google Scholar 

  38. N.J. Ramer, K.A. Stiso, Polymer 46, 10431 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to F. Pelizza or K. Johnston.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pelizza, F., Smith, B. & Johnston, K. A van der Waals density functional theory study of poly(vinylidene difluoride) crystalline phases. Eur. Phys. J. Spec. Top. 225, 1733–1742 (2016). https://doi.org/10.1140/epjst/e2016-60133-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2016-60133-8

Navigation