Skip to main content
Log in

Avoiding traps in trajectory space: Metadynamics enhanced transition path sampling

  • Regular Article
  • Sampling in Phase Space
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

We propose a transition path sampling (TPS) scheme designed to enhance sampling in systems with multiple reaction channels. In this method, based on a combination of the metadynamics algorithm with the TPS shooting move, a history dependent bias drives the simulation towards unexplored reaction channels. The bias, constructed as a superposition of repulsive Gaussian potentials deposited on the trajectories harvested in the course of the simulation, acts only during the initial stage of the trajectory generation, but leaves the dynamics along the trajectories unaffected such that the sampled pathways are true dynamical trajectories. Simulations carried out for two test systems indicate that the new approach effortlessly switches between distinct reaction channels even if they are separated by high barriers in trajectory space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.K. Faradjian, R. Elber, J. Chem. Phys. 120, 10880 (2004)

    Article  ADS  Google Scholar 

  2. R.J. Allen, P.B. Warren, P.R. ten Wolde, Phys. Rev. Lett. 94, 018104 (2005)

    Article  ADS  Google Scholar 

  3. W.E.W. Ren, E. Vanden-Eijnden, J. Phys. Chem. B 109, 6688 (2005)

    Article  Google Scholar 

  4. P.G. Bolhuis, D. Chandler, C. Dellago, Annu. Rev. Phys. Chem. 53, 291 (2002)

    Article  ADS  Google Scholar 

  5. C. Dellago, P.G. Bolhuis, F.S. Csajka, D. Chandler, J. Chem. Phys. 108, 1964 (1998)

    Article  ADS  Google Scholar 

  6. C. Dellago, P.G. Bolhuis, P.L. Geissler, D. Chandler, Adv. Chem. Phys. 123, 1 (2002)

    Google Scholar 

  7. T.S. van Erp, P.G. Bolhuis, J. Comput. Chem. 205, 157 (2005)

    ADS  MathSciNet  Google Scholar 

  8. D. Moroni, T.S. van Erp, P.G. Bolhuis, Phys. A 340, 395 (2004)

    Article  Google Scholar 

  9. P.G. Bolhuis, C. Dellago, Eur. Phys. J. Special Topics 224, 1 (2015)

    Article  Google Scholar 

  10. C. Dellago, P.G. Bolhuis, in Advanced Computer Simulation Approaches for Soft Matter Sciences III (Springer, New York, 2009), vol. 221 of Advances in Polymer Science, p. 167

  11. E. Marinari, G. Parisi, Europhys. Lett. 19, 451 (1992)

    Article  ADS  Google Scholar 

  12. P.G. Bolhuis, J. Chem. Phys. 129, 114108 (2008)

    Article  ADS  Google Scholar 

  13. T.J.H. Vlugt, B. Smit, Phys. Chem. Comm. 4, 11 (2001)

    Google Scholar 

  14. T.S. van Erp, Phys. Rev. Lett. 98, 268301(2007)

  15. T.S. van Erp, Comp. Phys. Comm. 179, 34 (2008)

    Article  ADS  Google Scholar 

  16. D.W.H. Swenson, P.G. Bolhuis, J. Chem. Phys. 141, 044101 (2014)

    Article  ADS  Google Scholar 

  17. F. Wang, D.P. Landau, Phys. Rev. Lett. 86, 2050 (2001)

    Article  ADS  Google Scholar 

  18. E.E. Borrero, C. Dellago, J. Chem. Phys. 133, 134112 (2010)

    Article  ADS  Google Scholar 

  19. T. Huber, A.E. Torda, W.F. Gunsteren, J. Comput. Aided. Mol. Des. 8, 695 (1994)

    Article  ADS  Google Scholar 

  20. A. Laio, M. Parrinello, Proc. Natl. Acad. Sci. USA 99, 12562 (2002)

    Article  ADS  Google Scholar 

  21. A. Laio, F.L. Gervasio, Rep. Prog. Phys. 71, 126601 (2008)

    Article  ADS  Google Scholar 

  22. G. Bussi, A. Laio, M. Parrinello, Phys. Rev. Lett. 96, 090601 (2006)

    Article  ADS  Google Scholar 

  23. P. Tiwary, M. Parrinello, Phys. Rev. Lett. 111, 230602 (2013)

    Article  ADS  Google Scholar 

  24. C. Dellago, P.G. Bolhuis, D. Chandler, J. Chem. Phys. 108, 9236 (1998)

    Article  ADS  Google Scholar 

  25. D. Provansi, A. Bortolato, M. Filizola, Biochem. 48, 10020 (2009)

    Article  Google Scholar 

  26. D. Branduardi, F.L. Gervasio, M. Parrinello, J. Chem. Phys. 126, 054103 (2007)

    Article  ADS  Google Scholar 

  27. J.D. Weeks, D. Chandler, H.C. Andersen, J. Chem. Phys. 54, 5237 (1971)

    Article  ADS  Google Scholar 

  28. D. Frenkel, B. Smit, Understanding Molecular Simulation: From Algorithms to Applications (Academic, San Diego, CA, 2002)

  29. M. Chopra, R. Malshe, A.S. Reddy, J.J. de Pablo, J. Chem. Phys. 128, 144104 (2008)

    Article  ADS  Google Scholar 

  30. E.E. Borrero, F. Escobedo, J. Phys. Chem. B 113, 6434 (2009)

    Article  Google Scholar 

  31. M. Grünwald, C. Dellago, Nano Lett. 9, 2099 (2009)

    Article  ADS  Google Scholar 

  32. M. Grünwald, K. Lutker, A.P. Alivisatos, E. Rabani, P.L. Geissler, Nano Lett. 13, 1367 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Dellago.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borrero, E., Dellago, C. Avoiding traps in trajectory space: Metadynamics enhanced transition path sampling. Eur. Phys. J. Spec. Top. 225, 1609–1620 (2016). https://doi.org/10.1140/epjst/e2016-60106-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2016-60106-y

Navigation