Skip to main content

Advertisement

Log in

Effect of boundary conditions on piezoelectric buckled beams for vibrational noise harvesting

  • Regular Article
  • Piezoelectric Energy Harvesting
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Nonlinear bistable systems have proven to be advantageous for energy harvesting of random and real ambient vibrations. One simple way of implementing a bistable transducer is setting a piezoelectric beam in a post-buckled configuration by axial compression. Besides, hinged or clamped-clamped type of boundary conditions correspond to two different post-buckled shape functions. Here we study, through theoretical analysis and numerical simulations, the efficiency of a hinged and clamped-clamped piezoelectric bridge under band-limited random noise with progressive axial load. Clamped configuration results to harvest 26% more power than hinged around an optimal axial load of 0.05%, while, in the intra-well trapped situation, above 0.1%, the two configurations present no substantial difference. Nevertheless, simulations confirm the advantage of exploiting inter-well oscillations in bistable regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. H. Vocca, F. Cottone, ICT – Energy – Concepts Towards Zero – Power Information and Communication Technology (InTechOpen, February, 2014)

  2. P.D. Mitcheson, E.M. Yeatman, G.K. Rao, A.S. Holmes, T.C. Green, Proc. IEEE 96, 1457 (2008)

    Article  Google Scholar 

  3. A. Bilbao, D. Hoover, J. Rice, J. Chapman, Proc. SPIE 7981, 798109 (2011)

    Article  Google Scholar 

  4. S. Meninger, J.O. Mur-Miranda, R. Amirtharajah, A. Chandrakasan, J.H. Lang, IEEE Transactions on Very Large Scale Integration (VLSI) Systems 9, 64 (2001)

    Article  Google Scholar 

  5. C. Eichhorn, R. Tchagsim, N. Wilhelm, P. Woias, J. Micromech. Microengineering 21, 104003 (2011)

    Article  ADS  Google Scholar 

  6. I.N. Ayala-Garcia, P.D. Mitcheson, E.M. Yeatman, D. Zhu, J. Tudor, S.P. Beeby, Sensors and Actuators A: Phys. 189, 266 (2013)

    Article  Google Scholar 

  7. D. Koyama, K. Nakamura, Proc. IEEE Ultrasonics Symp., 1973 (2010)

  8. M. Ferrari, V. Ferrari, M. Guizzetti, D. Marioli, A. Taroni, Sensors Actuators, A: Phys. 142, 329 (2008)

    Article  Google Scholar 

  9. Y. Tadesse, S. Zhang, S. Priya, J. Intell. Mater. Syst. Struct. 20, 625 (2009)

    Article  Google Scholar 

  10. J. Yang, Y. Wen, P. Li, X. Yue, Q. Yu, X. Bai, Appl. Phys. Lett. 103 (2013)

  11. S.G. Burrow, L.R. Clare, A resonant generator with non-linear compliance for energy harvesting in high vibrational environments 1, 715 (2007)

    Google Scholar 

  12. F. Cottone, P. Basset, H. Vocca, L. Gammaitoni, T. Bourouina, J. Intell. Mater. Syst. Struct. 25, 1484 (2014)

    Article  Google Scholar 

  13. F. Cottone, H. Vocca, L. Gammaitoni, Phys. Rev. Lett. 102, 080601 (2009)

    Article  ADS  Google Scholar 

  14. L. Gammaitoni, I. Neri, H. Vocca, Appl. Phys. Lett. 94 (2009)

  15. A. Erturk, W.G.R. Vieira, C. De Marqui Jr., D.J. Inman, Appl. Phys. Lett. 96, (2010)

  16. S.C. Stanton, C.C. McGehee, B.P. Mann, Physica D: Nonlinear Phenomena 239, 640 (2010)

    Article  ADS  Google Scholar 

  17. F. Cottone, L. Gammaitoni, H. Vocca, M. Ferrari, V. Ferrari, Smart Mater. Struct. 21 (2012)

  18. R. Masana, M.F. Daqaq, J. Appl. Phys. 111 (2012)

  19. C. Xu, Z. Liang, B. Ren, W. Di, H. Luo, D. Wang, K. Wang, Z. Chen, J. Appl. Phys. 114 (2013)

  20. C.A. Kitio Kwuimy, G. Litak, M. Borowiec, C. Nataraj, Appl. Phys. Lett. 100, 2013 (2012)

    Google Scholar 

  21. R. Masana, M.F. Daqaq, J. Vibr. Acoustics, Trans. ASME 133 (2011)

  22. J.N. Reddy, Mechanics of laminated composite plates and shells: theory and analysis (CRC press, 2004)

  23. D.J. Higham, SIAM Rev. 43, 525 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  24. K. Burrage, T. Tian, J. Comput. Appl. Math. 131, 407 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  25. L. Gammaitoni, F. Marchesoni, E. Menichella-Saetta, S. Santucci, Phys. Rev. Lett. 62, 349 (1989)

    Article  ADS  Google Scholar 

  26. E. Halvorsen, Phys. Rev. E – Statistical, Nonlinear, Soft Matter Phys. 87 (2013)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cottone, F., Mattarelli, M., Vocca, H. et al. Effect of boundary conditions on piezoelectric buckled beams for vibrational noise harvesting. Eur. Phys. J. Spec. Top. 224, 2855–2866 (2015). https://doi.org/10.1140/epjst/e2015-02593-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2015-02593-5

Keywords

Navigation