Skip to main content
Log in

Experimental investigation of electrohydrodynamic instabilities in micro channels

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

An electric field is applied to destabilize the interface between two Newtonian and immiscible liquids flowing in a rectangular micro channel. The liquids are pumped into the micro channel with a syringe pump and a DC electric field is applied either parallel or normal to the flat interface between these liquids. The two liquids used in the experiments are a combination of ethylene glycol, different viscosity silicone oils, castor oil, and olive oil. The onset of electrohydrodynamic instability is investigated for various parameters, including the ratios of the flow rates, and viscosities of the liquids, the width of the micro channel, and the direction of the applied electric field. The order of the voltage applied to destabilize the interface is in the range 95 and 1190 V. The results of the experiments show that an increase in the viscosity ratio and the flow rate ratio of silicone oil to ethylene glycol have a stabilizing effect. It is also found that the important parameter to determine the critical voltage is the flow rate ratio, not the individual flow rates of the liquids. Also, as the width of the micro channel increases, the critical voltage increases. Lastly, for the liquid combinations used in the experiments, the interface could not be destabilized under the influence of a parallel electric field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Glasgow, N. Aubry, Lab Chip 3, 114 (2003)

    Article  Google Scholar 

  2. A.O.E. Moctar, N. Aubry, J. Batton, Lab Chip 3, 273 (2003)

    Article  Google Scholar 

  3. H. Lin, B.D. Storey, M.H. Oddy, C.H. Chen, J.G. Santiago, Phys. Fluids 16, 1922 (2004)

    Article  ADS  Google Scholar 

  4. J.R. Pacheco, Phys. Fluids 20, 093603 (2008)

    Article  ADS  Google Scholar 

  5. J.D. Tice, H. Song, A.D. Lyon, R.F. Ismagilov, Langmuir 19, 9127 (2003)

    Article  Google Scholar 

  6. P. Garstecki, M.J. Fuerstman, H.A. Stone, G.M. Whitesides, Lab Chip 6, 437 (2006)

    Article  Google Scholar 

  7. M. Joanicot, A. Ajdari, Science 309, 887 (2005)

    Article  Google Scholar 

  8. S.L. Anna, N. Bontoux, H.A. Stone, Appl. Phys. Lett. 82, 364 (2003)

    Article  ADS  Google Scholar 

  9. O. Ozen, N. Aubry, D. Papageorgiou, P. Petropoulos, Phys. Rev. Lett. 96, 144501 (2006)

    Article  ADS  Google Scholar 

  10. S.Y. Teh, R. Lin, L.H. Hungb, A.P. Lee, Lab Chip 8, 198 (2008)

    Article  Google Scholar 

  11. R. Seemann, M. Brinkmann, T. Pfohl, S. Herminghaus, Rep. Prog. Phys. 75, 016601 (2012)

    Article  ADS  Google Scholar 

  12. K. Abdella, H. Rasmussen, J. Comput. Appl. Math. 78, 33 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  13. J.C. Baygents, F. Baldessari, Phys. Fluids 10, 301 (1998)

    Article  ADS  Google Scholar 

  14. R.V. Craster, O.K. Matar, Phys. Fluids 17, 032104 (2005)

    Article  ADS  Google Scholar 

  15. R.M. Thaokar, V. Kumaran, Phys. Fluids 17, 084104 (2005)

    Article  ADS  Google Scholar 

  16. O. Ozen, N. Aubry, D. Papageorgiou, P. Petropoulos, Electrochim. Acta 51, 5316 (2006)

    Article  Google Scholar 

  17. F. Li, O. Ozen, A. Aubry, D.T. Papageorgiou, P.G. Petropoulos, J. Fluid Mech. 583, 347 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  18. A.K. Uguz, O. Ozen, N. Aubry, Phys. Fluids 20, 031702 (2008)

    Article  ADS  Google Scholar 

  19. A.K. Uguz, N. Aubry, Phys. Fluids 20, 092103 (2008)

    Article  ADS  Google Scholar 

  20. J. Zhang, J.D. Zahn, H. Lin, J. Fluid Mech. 681, 293 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  21. J.R. Melcher, G.I. Taylor, Annu. Rev. Fluid Mech. 1, 111 (1969)

    Article  ADS  Google Scholar 

  22. D.A. Saville, Annu. Rev. Fluid Mech. 29, 27 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  23. D. Papageorgiou, P. Petropoulos, J. Eng. Math. 50, 223 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  24. S.Y. Chou, L. Zhuang, L. Guo, Appl. Phys. Lett. 75, 1004 (1999)

    Article  ADS  Google Scholar 

  25. E. Schäffer, T. Thurn-Albrecht, T.P. Russell, U. Steiner, Nature 403, 874 (2000)

    Article  ADS  Google Scholar 

  26. G. Ersoy, A.K. Uguz, Fluid Dyn. Res. 44, 031406 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  27. A. Nurocak, A.K. Uguz, Eur. Phys. J. Special Topics 219, 99 (2013)

    Article  ADS  Google Scholar 

  28. J.D. Posner, J.G. Santiago, J. Fluid Mech. 555, 1 (2006)

    Article  ADS  MATH  Google Scholar 

  29. P. Gambhire, R.M. Thaokar, Phys. Rev. E 86, 036301 (2012)

    Article  ADS  Google Scholar 

  30. H.W. Li, T.N. Wong, N.T. Nguyen, Int. J. Heat Mass Tran. 55, 6994 (2012)

    Article  Google Scholar 

  31. H.W. Li, T.N. Wong, N.T. Nguyen, Micro Nanosyst. 4, 14 (2012)

    Article  Google Scholar 

  32. J. Bico, D. Quéré, Europhys. Lett. 51, 546 (2000)

    Article  ADS  Google Scholar 

  33. A.P. Hooper, Phys. Fluids A 1, 1133 (1989)

    Article  ADS  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to P. Eribol or A.K. Uguz.

Electronic supplementary material

Supplementary data

MPEG file

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eribol, P., Uguz, A. Experimental investigation of electrohydrodynamic instabilities in micro channels. Eur. Phys. J. Spec. Top. 224, 425–434 (2015). https://doi.org/10.1140/epjst/e2015-02371-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2015-02371-5

Keywords

Navigation