Skip to main content
Log in

The Armstrong experiment revisited

  • Review
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

When a high-voltage direct-current is applied to two beakers filled with water or polar liquid dielectrica, a horizontal bridge forms between the two beakers. This experiment was first carried out by Lord Armstrong in 1893 and then forgotten until recently. Such bridges are stable by the action of electrohydrodynamic (EHD) forces caused by electric field gradients counteracting gravity. Due to these gradients a permanent pumping of liquid from one beaker into the other is observed. At macroscopic scale several of the properties of a horizontal water bridge can be explained by modern electrohydrodynamics, analyzing the motion of fluids in electric fields. Whereas on the molecular scale water can be described by quantum mechanics, there is a conceptual gap at mesoscopic scale which is bridged by a number of theories including quantum mechanical entanglement and coherent structures in water – theories that we discuss here. Much of the phenomenon is already understood, but even more can still be learned from it, since such “floating” liquid bridges resemble a small high voltage laboratory of their own: The physics of liquids in electric fields of some kV/cm can be studied, even long time experiments like neutron or light scattering are feasible since the bridge is in a steady-state equilibrium and can be kept stable for hours. It is also an electro-chemical reactor where compounds are transported through by the EHD flow, enabling the study of electrochemical reactions under potentials which are otherwise not easily accessible. Last but not least the bridge provides the experimental biologist with the opportunity to expose living organisms such as bacteria to electric fields without killing them, but with a significant influence on their behavior, and possibly, even on their genome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.G. Armstrong, Electrical phenomena The Newcastle Literary, Philosophical Society, The Electrical Engineer 10 (1893), p. 154

    Google Scholar 

  2. W. Uhlig, Personal communication, Laboratory of Inorganic Chemistry, ETH Hönggerberg – HCI, CH-8093 Zürich (2005)

  3. E.C. Fuchs, J. Woisetschläger, K. Gatterer, E. Maier, R. Pecnik, G. Holler, H. Eisenkölbl, J. Phys. D: Appl. Phys. 40, 6112 (2007)

    ADS  Google Scholar 

  4. E.C. Fuchs, K. Gatterer, G. Holler, J. Woisetschläger, J. Phys. D: Appl. Phys. 41, 185502 (2008)

    ADS  Google Scholar 

  5. E.C. Fuchs, B. Bitschnau, J. Woisetschläger, E. Maier, B. Beuneu, J. Teixeira, J. Phys. D: Appl. Phys. 42, 065502 (2009)

    ADS  Google Scholar 

  6. L.B. Skinner, C.J. Benmore, B. Shyama, J.K.R. Weber, J.B. Pariseb, PNAS 109, 16463 (2012)

    ADS  Google Scholar 

  7. E.C. Fuchs, P. Baroni, B. Bitschnau, L. Noirez, J. Phys. D: Appl. Phys. 43, 105502:1 (2010)

    Google Scholar 

  8. J. Woisetschläger, K. Gatterer, E.C. Fuchs, Exp. Fluids 48, 121 (2010)

    Google Scholar 

  9. E.C. Fuchs, B. Bitschnau, S. Di Fonzo, A. Gessini, J. Woisetschläger, F. Bencivenga, J. Phys. Sc. Appl. 1, 135 (2011)

    Google Scholar 

  10. H. Nishiumi, F. Honda, Res. Let. Phys. Chem. 2009, ID 371650 (2009)

    Google Scholar 

  11. J. Mrázek, J.V. Burda, J. Chem. Phys. 125, 194518 (2006)

    ADS  Google Scholar 

  12. W.L. Jorgensen, J. Tirado-Rives, PNAS Proc. Natl. Acad. Sci. 102, 6685 (2005)

    ADS  Google Scholar 

  13. A. Castellanos, Electrohydrodynamics, International Centre for Mechanical Sciences, CISM Courses and Lectures No. 380 (Springer, Wien, New York, Ed., 1998)

  14. E. Del Giudice, J. Phys. Conf. Ser. 67, 012006 (2006)

    Google Scholar 

  15. T. Head-Gordon, M.E. Johnson, PNAS Proc. Natl. Acad. Sci. 21, 7973 (2006)

    ADS  Google Scholar 

  16. H.E. Stanley, S.V. Buldyrev, G. Franzese, N. Giovambattista, F.W. Starr, Phil. Trans. R. Soc. A 363, 509 (2005)

    ADS  Google Scholar 

  17. C.A. Chatzidimitriou-Dreismann, T.A. Redah, R.M.F. Streffer, J. Mayers, Phys. Rev. Lett. 79, 2839 (1997)

    ADS  Google Scholar 

  18. R. Arani, I. Bono, E. Del Giudice, G. Preparata, Int. J. Mod. Phys. B 9, 1813 (1995)

    ADS  Google Scholar 

  19. G.H. Pollack, Cells, gels and the engine of life (Ebener & Sons, Seattle WA, 2001)

  20. M. Eisenhut, X. Guo, A.H. Paulitsch-Fuchs, E.C. Fuchs, Cent. Eur. J. Chem. 9, 391 (2011)

    Google Scholar 

  21. E.C. Fuchs, L.L.F. Agostinho, M. Eisenhut, J. Woisetschläger, Proc. SPIE 7376, 7376E1 (2010)

    ADS  Google Scholar 

  22. K. Ovchinnikova, G.H. Pollack, Langmuir 25, 542 (2009)

    Google Scholar 

  23. H.R. Corti, A. Colussi, Langmuir 25, 6587 (2009)

    Google Scholar 

  24. K. Ovchinnikova, G.H. Pollack, Langmuir 25, 11202 (2009)

    Google Scholar 

  25. H.R. Corti, A. Colussi, Langmuir 25, 11203 (2009)

    Google Scholar 

  26. A. Widom, J. Swain, J. Silverberg, S. Sivasubramanian, Y.N. Srivastava, Phys. Rev. E 80, 016301 (2009)

    ADS  Google Scholar 

  27. F. Saija, F. Aliotta, M.E. Fontanella, M. Pochylski, G. Salvato, C. Vasi, R.C. Ponterio, J. Chem. Phys. 133, 081104 (2010)

    ADS  Google Scholar 

  28. A.G. Marín, D. Lohse, Phys. Fluids 22, 122104 (2010)

    ADS  Google Scholar 

  29. R.C. Ponterio, M. Pochylski, F. Aliotta, C. Vasi, M.E. Fontanella, J. Saija, J. Phys. D: Appl. Phys. 43, 175405:1 (2010)

    Google Scholar 

  30. A.A. Aerov, Why the Water Bridge does not collapse [arXiv:1012.1592v1] (2010)

  31. R.J. Raco, Science 160, 311 (1968)

    ADS  Google Scholar 

  32. H. Gonzalez, F.M.J. McCluskey, A. Castellanos, A. Barrero, J. Fluid Mech. 206, 545 (1989)

    ADS  MATH  Google Scholar 

  33. D.A. Saville, Ann. Rev. Fluid Mech. 29, 27 (1997)

    ADS  MathSciNet  Google Scholar 

  34. C.L. Burcham, D.A. Saville, J. Fluid Mech. 405, 37 (2000)

    ADS  MATH  Google Scholar 

  35. C.L. Burcham, D.A. Saville, J. Fluid Mech. 452, 163 (2002)

    ADS  MATH  Google Scholar 

  36. J.R. Melcher, E.P. Warren, J. Fluid Mech. 47, 127 (1971)

    ADS  Google Scholar 

  37. A. Ramos, A. Castellanos, Phys. Fluids 6, 207 (1993)

    Google Scholar 

  38. H. Pellat, C. R. Acad. Sci. Paris 123, 691 (1896)

    Google Scholar 

  39. J. Woisetschläger, A.D. Wexler, G. Holler, M. Eisenhut, K. Gatterer, E.C. Fuchs, Exp. Fluids 52, 193 (2012)

    Google Scholar 

  40. E. Del Giudice, E.C. Fuchs, G. Vitiello, Water (Seattle) 2, 69 (2010)

    Google Scholar 

  41. E. Del Giudice, G. Vitiello, Water (Seattle) 2, 133 (2010)

    Google Scholar 

  42. E.C. Fuchs, L.L.F. Aghostinho, A. Wexler, R.M. Wagterveld, J. Tuinstra, J. Woisetschläger, J. Phys. D: Appl. Phys. 44, 025501 (2011)

    ADS  Google Scholar 

  43. D. Eisenberg, W. Kauzman, The Structure and Properties of Water (Clarendon Press: Oxford, UK, 1969)

  44. F. Franks, Water: A Comprehensive Treatise (Plenum: New York, NY, USA, 1972–1982)

  45. P. Ball, Life’s Matrix: a Biography of Water (Farrar, Straus, and Giroux: New York, NY, USA, 1999)

  46. P. Ball, Nature 452, 291 (2008)

    ADS  Google Scholar 

  47. P. Ball, Chem. Rev. 108, 74 (2008)

    Google Scholar 

  48. M.F. Chaplin, Homeopath. Med. Panorama 11, 12 (2003)

    Google Scholar 

  49. M.F. Chaplin, Homeopath. Med. Panorama 11, 22 (2003)

    Google Scholar 

  50. C.H. Cho, S. Singh, G.W. Robinson, J. Chem. Phys. 107, 7979 (1997)

    ADS  Google Scholar 

  51. P. Schuster, G. Zundel, C. Sandorfy, The Hydrogen Bond: Recent Developments in Theory and Experiments (North-Holland: Amsterdam, The Netherlands, 1976; Vols. I-III)

  52. S.S. Xantheas, Chem. Phys. 258, 225 (2000)

    ADS  Google Scholar 

  53. H.E. Stanley, Pramana J. Phys. 53, 53 (1999)

    ADS  Google Scholar 

  54. A.E. Reed, F. Weinhold, L.A. Curtiss, D.J. Pochatko, J. Chem. Phys. 84, 5687 (1986)

    ADS  Google Scholar 

  55. L. Ojamäe, K. Hermansson, J. Phys. Chem. 98, 4271 (1994)

    Google Scholar 

  56. J.M. Pedulla, F. Vila, K.D. Jordan, J. Chem. Phys. 105, 11091 (1996)

    ADS  Google Scholar 

  57. R. Kumar, J.L. Skinner, J. Phys. Chem. 112, 8311 (2008)

    Google Scholar 

  58. A.E. Reed, L.A. Curtiss, F. Weinhold, Chem. Rev. 88, 899 (1988)

    Google Scholar 

  59. R. Car, M. Parrinello, Phys. Rev. Lett. 55, 2471 (1985)

    ADS  Google Scholar 

  60. S. Izvekov, G.A. Voth, J. Chem. Phys. 116, 10372 (2002)

    ADS  Google Scholar 

  61. H.-S. Lee, M.E. Tuckerman, J. Chem. Phys. 126, 164501 (2007)

    ADS  Google Scholar 

  62. E. Schwegler, J.C. Grossman, F. Gygi, G. Galli, J. Chem. Phys. 121, 5400 (2004)

    ADS  Google Scholar 

  63. Y.A. Mantz, B. Chen, G.J. Martyna, J. Phys. Chem. B 110, 3540 (2006)

    Google Scholar 

  64. T. Todorova, A.P. Seitsonen, J. Hutter, I.-F.W. Kuo, C.J. Mundy, J. Phys. Chem. B 110, 3685 (2006)

    Google Scholar 

  65. J. van de Vondele, F. Mohamed, M. Krack, J. Hutter, M. Sprik, M. Parrinello, J. Chem. Phys. 122, 14515 (2005)

    ADS  Google Scholar 

  66. R. Bukowski, K. Szalewicz, G.C. Groenenboom, A. van der Avoird, Science 315, 1249 (2007)

    ADS  Google Scholar 

  67. G.S. Fanourgakis, S.S. Xantheas, J. Phys. Chem. A 110, 4100 (2006)

    Google Scholar 

  68. M. Tuckerman, K. Laasonen, M. Sprik, M. Parrinello, J. Phys. Chem. 99, 5749 (1995)

    Google Scholar 

  69. T.S. Hofer, H.T. Tran, C.F. Schwenk, B.M. Rode, J. Comput. Chem. 25, 211 (2004)

    Google Scholar 

  70. R.A. Kuharski, P.J. Rossky, J. Chem. Phys. 82, 5164 (1985)

    ADS  Google Scholar 

  71. J.A. Poulsen, G. Nyman, P.J. Rossky, J. Chem. Theory Comput. 2, 1482 (2006)

    Google Scholar 

  72. H.A. Stern, F. Rittner, B.J. Berne, R.A. Friesner, J. Chem. Phys. 115, 2237 (2001)

    ADS  Google Scholar 

  73. F. Paesani, S. Iuchi, G.A. Voth, J. Chem. Phys. 127, 074506 (2007)

    ADS  Google Scholar 

  74. L.H. de la Peña, P.G. Kusalik, J. Chem. Phys. 121, 5992 (2004)

    ADS  Google Scholar 

  75. F. Paesani, G.A. Voth, J. Phys. Chem. B 113, 5702 (2009)

  76. J. Teixeira, A. Luzar, Physics of Liquid Water. Structure and Dynamics. In: Hydration Processes in Biology: Theoretical and Experimental Approaches, NATO ASI series A, edited by M.C. Bellissent-Funel (IOS Press: Amsterdam, The Netherlands, 1999), p. 35

  77. A.K. Soper, J. Phys. Condens. Matter 17, S3273 (2005)

    ADS  Google Scholar 

  78. A.K. Soper, J. Phys. Condens. Matter 19, 335206:1 (2007)

    Google Scholar 

  79. A.K. Soper, ISRN Physical Chemistry 2013, ID 279463 (2013)

    Google Scholar 

  80. H.E. Stanley, S.V. Buldyrev, G. Franzese, N. Giovambattista, F.W. Starr, Phil. Trans. R. Soc. A 363, 509 (2005)

    ADS  Google Scholar 

  81. H.E. Stanley, J. Teixeira, J. Chem. Phys. 73, 3404 (1980)

    ADS  MathSciNet  Google Scholar 

  82. H.E. Stanley, J. Teixeira, A. Geiger, R.L. Blumberg, Phyisca 106, 260 (1981)

    ADS  Google Scholar 

  83. O. Mishima, H.E. Stanley, Nature 396, 329 (1998)

    ADS  Google Scholar 

  84. M. Yamada, S. Mossa, H.E. Stanley, F. Sciortino, PRL 88, 195701 (2002)

    ADS  Google Scholar 

  85. M. Leetmaa, M. Ljungberg, H. Ogasawara, M. Odelius, L.-Å. Näslund, A. Nilsson, L.G.M. Pettersson, J. Chem. Phys. 125, 244510:1 (2006)

    Google Scholar 

  86. M. Leetmaa, K.T. Wikfeldt, M.P. Ljungberg, M. Odelius, J. Swenson, A. Nilsson, L.G.M. Pettersson, J. Chem. Phys. 129, 084502:1 (2008)

    Google Scholar 

  87. F. Bruni, M.A. Ricci, A.K. Soper, “Obtaining distribution functions for water from diffraction data,” in Francesco Paolo Ricci: His Legacy and Future Perspectives of Neutron Scattering, edited by M. Nardone, M.A. Ricci, Vol. 76 (Società Italiana di Fisica, Bologna, Italy, 2001)

  88. N.A. Chumaevskii, M.N. Rodnikova, J. Mol. Liquids 106, 167 (2003)

    Google Scholar 

  89. H.J. Bakker, J.L. Skinner, Chem. Rev. 110, 1498 (2010)

    Google Scholar 

  90. E.T.J. Nibbering, T. Elsaesser, Chem. Rev. 104, 1887 (2004)

    Google Scholar 

  91. P. Wernet, D. Nordlund, U. Bergmann, M. Cavalleri, M. Odelius, H. Ogasawara, L.-Å . Näslund, T.K. Hirsch, L. Ojamäe, P. Glatzel, L.G.M. Pettersson, A. Nilsson, Science 304, 995 (2004)

    ADS  Google Scholar 

  92. M. Odelius, M. Cavalleri, A. Nilsson, L.G.M. Pettersson, Phys. Rev. B 73, 024205:1 (2006)

    ADS  Google Scholar 

  93. J.D. Smith, C.D. Cappa, K.R. Wilson, B.M. Messer, R.C. Cohen, R.J. Saykally, Science 306, 851 (2004)

    ADS  Google Scholar 

  94. T. Head-Gordon, M.E. Johnson, PNAS 103, 7973 (2006)

    ADS  Google Scholar 

  95. J.S. Tse, D.M. Shaw, D.D. Klug, S. Patchkovskii, G. Vankó, G. Monaco, M. Krisch, PRL 100, 095502:1 (2008)

    ADS  Google Scholar 

  96. E.C. Fuchs, MDPI Water 2, 381 (2010)

    Google Scholar 

  97. W. Gilbert, De magnete, magneticisque corporibus, et de magno magnete tellure; physiologia nova, plurimis argumentis, experimentis demonstrata (London, Peter Short, 1600)

  98. L. Rayleigh, Phil. Mag. 14, 184 (1882)

    Google Scholar 

  99. J. Zeleny, J. Phys. Rev. 3, 69 (1914)

    ADS  Google Scholar 

  100. J. Zeleny, J. Phys. Rev. 10, 1 (1917)

    ADS  Google Scholar 

  101. G. Taylor, Proc. Royal Soc. London: A 313, 453 (1969)

    ADS  Google Scholar 

  102. J.F. Wei, W.Q. Shui, F. Zhuo, Y. Lu, K.K. Chen, G.B. Xu, P.Y. Yang, Mass Spectrom. Rev. 21, 158 (2002)

    Google Scholar 

  103. K.B. Geerse, Ph.D. thesis, TU Delft, The Netherlands, 2003

  104. A.G. Bailey, Electrostatic Spraying of Liquids (John Wiley & Sons INC., 1988)

  105. J.M. Grace, J.C.M. Marijnissen, J. Aerosol Sci. 25, 1005 (1994)

    Google Scholar 

  106. J. Eggers, E. Villermaux, Rep. Prog. Phys. 71, 036601:1 (2008)

    Google Scholar 

  107. G.I. Taylor, Proc. R. Soc. London, Ser. A 280, 383 (1964)

    ADS  MATH  Google Scholar 

  108. J.F. de la Mora, Annu. Rev. Fluid Mech. 39, 217 (2007)

    ADS  Google Scholar 

  109. R.T. Collins, J.J. Jones, M.T. Harris, O.A. Basaran, Nat. Phys. 4, 149 (2008)

    Google Scholar 

  110. G.I. Taylor, Proc. R. Soc. London, Ser. A 313, 453 (1969)

    ADS  Google Scholar 

  111. M.M. Hohman, M. Shin, G. Rutledge, M.P. Brenner, Phys. Fluids 13, 2201 (2001)

    ADS  MathSciNet  Google Scholar 

  112. A.G. Riboux, I.G. Marín, A. Loscertales, J. Barrero, Fluid Mech. 671, 226 (2011)

    ADS  MATH  Google Scholar 

  113. J.C. Bird, W.D. Ristenpart, A. Belmonte, H.A. Stone, Phys. Rev. Lett. 103, 164502 (2009)

    ADS  Google Scholar 

  114. L.L.F. Agostinho, E.C. Fuchs, S.J. Metz, C.U. Yurteri, J.C.M. Marijnissen, Phys. Rev. E 84, 026317 (2011)

    ADS  Google Scholar 

  115. R.P.A. Hartman, D.J. Brunner, D.M.A. Camelot, J.C.M. Marijnissen, B. Scarlett, J. Aerosol Sci. 31, 65 (2000)

    Google Scholar 

  116. R.P.A. Hartman, D.J. Brunner, D.M.A. Camelot, J.C.M. Marijnissen, B. Scarlett, J. Aerosol Sci. 30, 823 (1999)

    Google Scholar 

  117. R.P.A. Hartman, J.-P. Borra, D.J. Brunner, J.C.M. Marijnissen, B. Scarlett, J. Electrostat. 47, 143 (1999)

    Google Scholar 

  118. M. Cloupeau, B. Prunet-Foch, J. Electrostatics 22, 135 (1989)

    Google Scholar 

  119. A. Gomez, K. Tang, Phys. Fluids 6, 404 (1994)

    ADS  Google Scholar 

  120. D.-R. Chen, D.Y.H. Pui, S.L. Kaufman, J. Aerosol Sci. 26, 963 (1995)

    Google Scholar 

  121. A. Ramos, H. Gonzalez, A. Castellanos, Phys. Fluids 6, 3206 (1994)

    ADS  MathSciNet  Google Scholar 

  122. K. Morawetz, AIP Adv. 2, 022146 (2012)

    ADS  Google Scholar 

  123. K. Morawetz, Phys. Rev. E 86, 026302 (2012)

    ADS  Google Scholar 

  124. C. Saunders, C. Space Sci. Rev. 137, 335 (2008)

    ADS  Google Scholar 

  125. A.M. Gañán-Calvo, J. Montanero, Phys. Rev. E. 79, 066305:1 (2009)

    ADS  Google Scholar 

  126. E.C. Fuchs, A. Cherukupally, A.H. Paulitsch-Fuchs, L.L.F. Agostinho, A.D. Wexler, J. Woisetschläger, F.T. Freund, J. Phys. D: Appl. Phys. 45, 475401 (2012)

    ADS  Google Scholar 

  127. D. Rai, A.D. Kulkarni, S.P. Gejji, R.K. Pathak, J. Chem. Phys. 128, 34310:1 (2008)

    Google Scholar 

  128. L. Onsager, J. Chem. Phys. 2, 599 (1934)

    ADS  Google Scholar 

  129. G.B. Briere, Brit. J. Appl. Phys. 15, 413 (1964)

    ADS  Google Scholar 

  130. S.I. Jeong, J. Seyed-Yagoobi, IEEE Trans. Ind. Appl. 39, 355 (2003)

    Google Scholar 

  131. A.J. Zhakin, Conduction phenomena in dielectric liquids, edited by A. Castellanos, Electrohydrodynamics, International Centre for Mechanical Sciences, CISM Courses and Lectures No. 380 (Springer, Vienna, 1998)

  132. S.I. Jeong, J. Seyed-Yagoobi, IEEE Trans. Dielect. Elect. Ins. 11, 899 (2004)

    Google Scholar 

  133. E. Del Giudice, P.R. Spinetti, A. Tedeschi, MDPI Water 2, 566 (2010)

    Google Scholar 

  134. E. Del Giudice, G. Vitiello, Water (Seattle) 2, 133 (2011)

    Google Scholar 

  135. L. Piatkowski, A.D. Wexler, E.C. Fuchs, H. Schoenmaker, H.J. Bakker, PCCP 14, 6160 (2012)

    ADS  Google Scholar 

  136. S. Woutersen, U. Emmerichs, H.-K. Nienhuys, H.J. Bakker, Phys. Rev. Lett. 81, 1106 (1998)

    ADS  Google Scholar 

  137. G.H. Pollack, University of Washington, Department of Bioengineering University of Washington, Box 355061, William H. Foege Building, Room N210A (private communication)

  138. H. Hülsheger, J. Potel, E.G. Niemann, Radiat. Environ. Biophys. 22, 149 (1983)

    Google Scholar 

  139. H. Andersson, A. van den Berg, Sensors and Actuators B: Chemical. 92, 315 (2003)

    Google Scholar 

  140. C. Yi, C.W. Li, S. Ji, M. Yang, Analytica Chimica Acta. 560, 1 (2006)

    Google Scholar 

  141. H. Tsutsui, C.M. Ho, Mech. Res. Comm. 36, 92 (2009)

    MATH  Google Scholar 

  142. D.R. Gossett, W.M. Weaver, A.J. Mach, C. Hur, H.T. Kwong Tse, W. Lee, H. Amini, D. Di Carlo, Anal. Bioanal. Chem. 397, 3249 (2010)

    Google Scholar 

  143. N.M. Calvin, P.C. Hanawalt, J. Bacteriol. 170, 2796 (1988)

    Google Scholar 

  144. C. Chen, S.W. Smye, M.P. Robinson, J.A. Evans, Med. Biol. Eng. Comp. 44, 5 (1988)

    Google Scholar 

  145. M.B. Fox, D.C. Esveld, A. Valero, R. Luttge, H.C. Mastwijk, P.V. Bartels, A. van den Berg, R.M. Boom, Anal. Bioanal. Chem. 385, 474 (2006)

    Google Scholar 

  146. W. Krassowska Neu, J.C. Neu, Cardiac Bioelectric Therapy 2, 133 (2009)

    Google Scholar 

  147. P.T. Johnstone, P.S. Bodger, IPENZ Trans. 24, 30 (1997)

    Google Scholar 

  148. J. Mosqueda-Melgar, P. Elez-Martínez, R.M. Raybaudi-Massilia, O. Martín-Belloso, Crit. Rev. Food Sc. Nutrition 48, 747 (2008)

    Google Scholar 

  149. C. Gusbeth, W. Frey, H. Volkmann, T. Schwartz, H. Bluhm, Chemosphere. 75, 228 (2009)

    Google Scholar 

  150. C.Y. Hwang, S. Jung, Y.S. Hwang, B.C. Cho, Water Air Soil Pollut. 213, 161 (2010)

    Google Scholar 

  151. J. Engebrecht, K. Nealson, M. Silverman, Cell. 32, 773 (1983)

    Google Scholar 

  152. A.H. Paulitsch-Fuchs, E.C. Fuchs, A.D. Wexler, F.T. Freund, L.J. Rothschild, A. Cherukupally, G.J.W. Euverink, Phys. Biol. 9, 026006 (2012)

    ADS  Google Scholar 

  153. Y. Katsir, L. Miller, Y. Aharonov, E. Ben-Jacob, J. Amer. Electrochem. Society 154, D249 (2007)

    Google Scholar 

  154. E. Ben Jacob, Y. Aharonov, Y. Shapira, Biofilms 1, 239 (2005)

    Google Scholar 

  155. L. Rey, Physica A 323, 67 (2003)

    ADS  MathSciNet  Google Scholar 

  156. L. Rey, Homeopathy 96, 170 (2007)

    Google Scholar 

  157. F. Freund, H. Wengeler, Ber. Bunsenges. Phys. Chem. 84, 866 (1980)

    Google Scholar 

  158. R. Martens, H. Wengeler, F. Freund, Ber. Bunsenges. Phys. Chem. 84, 873 (1980)

    Google Scholar 

  159. F. Freund, H. Wengeler, J. Phys. Chim. France 77, 837 (1980)

    Google Scholar 

  160. F. Freund, J.C. Nièpce, Adv. Solid State Chem. 1, 26 (1989)

    Google Scholar 

  161. A. Springer, V. Hagen, D.A. Cherepanov, Y.N. Antonenko, P. Pohl, Proc. Natl Acad. Sci. 108, 14461 (2011)

    ADS  Google Scholar 

  162. A.A. Pietropaolo, R. Senesi, C. Andreani, A. Botti, M.A. Ricci, F. Bruni, Phys. Rev. Lett. 100, 127802 (2008)

    ADS  Google Scholar 

  163. A. Soper, Phys. Rev. Lett. 103, 069801 (2009)

    ADS  Google Scholar 

  164. M. Freda, A. Piluso, A. Santucci, P. Sassi, Appl. Spectrosc. 59, 1155 (2005)

    ADS  Google Scholar 

  165. D. Kraemer, M.L. Cowan, A. Paarmann, N. Huse, E.T.J. Nibberling, T. Elsaesser, R.J. Dwayne Miller, Proc. Natl Acad. Sci. 105, 437 (2008)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elmar C. Fuchs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fuchs, E.C., Wexler, A.D., Paulitsch-Fuchs, A.H. et al. The Armstrong experiment revisited. Eur. Phys. J. Spec. Top. 223, 959–977 (2014). https://doi.org/10.1140/epjst/e2013-01924-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2013-01924-x

Keywords

Navigation