Skip to main content
Log in

Viscous dissipation in 2D fluid dynamics as a symplectic process and its metriplectic representation

The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

Dissipation can be represented in Hamiltonian mechanics in an extended phase space as a symplectic process. The method uses an auxiliary variable which represents the excitation of unresolved dynamics and a Hamiltonian for the interaction between the resolved dynamics and the auxiliary variable. This method is applied to viscous dissipation (including hyper-viscosity) in a two-dimensional fluid, for which the dynamics is non-canonical. We derive a metriplectic representation and suggest a measure for the entropy of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. V. Arnol'd, A. Givental', in Dynamical Systems IV, edited by V. Arnol'd, S. Novikov (Springer, 2001) pp. 1--138

  2. R. Littlejohn, in Mathematical methods in hydrodynamics and integrability in related dynamical systems, edited by M. Tabor, Y. Treve, AIP Conf. Proc., 88 (AIP, New York, 1982) p. 47

  3. P.J. Morrison, J. Phys. Conf. Ser. 169, 012006 (2009)

    Article  Google Scholar 

  4. G.K. Vallis, G.F. Carnevale, W.R. Young, J. Fluid Mech. 207, 133 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  5. T.G. Shepherd, J. Fluid Mech. 213, 573 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  6. F. Gay-Balmaz, D.D. Holmes, Nonlinearity 26, 495 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  7. N. Padhye, P.J. Morrison, Plasma Phys. Rep. 22, 869 (1996)

    ADS  Google Scholar 

  8. P.J. Morrison, Rev. Mod. Phys. 70, 467 (1998)

    Article  ADS  Google Scholar 

  9. A.N. Kaufman, Phys. Lett. A 100, 419 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  10. P.J. Morrison, Phys. Lett. A 100, 423 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  11. P.J. Morrison, Physica D 18, 410 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  12. M. Grmela, Physica D 21, 179 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  13. L.A. Turski, A.N. Kaufman, Phys. Lett. A 120, 331 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  14. A.N. Beris, B.J. Edwards, J. Rheol. 34, 55 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  15. D.D. Holm, V. Putkaradze, C. Tronci, J. Phys. A: Math. Theor. 41, 344010 (2008)

    Article  Google Scholar 

  16. A. Bihlo, J. Phys. A: Math. Theor. 41, 292001 (2008)

    Article  MathSciNet  Google Scholar 

  17. P. Martin, E. Siggia, H. Rose, Phys. Rev. A 8, 423 (1973)

    Article  ADS  Google Scholar 

  18. R. Phythian, J. Phys. A: Math. Gen. 8, 1423 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  19. R. Phythian, J. Phys. A: Math. Gen. 9, 269 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  20. R. Phythian, J. Phys. A: Math. Gen. 10, 777 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  21. O. Cépas, J. Kurchan, Eur. Phys. J. B 2, 221 (1998)

    Article  ADS  Google Scholar 

  22. R. Graham, T. Tél, Phys. Rev. Lett. 52, 9 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  23. R. Graham, T. Tél, J. Stat. Phys. 35, 729 (1984)

    Article  ADS  Google Scholar 

  24. R. Graham, T. Tél, Phys. Rev. A 31, 1109 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  25. G. Carnevale, J. Frederiksen, J. Fluid Mech. 131, 289 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  26. I. Drummond, J. Fluid Mech. 123, 59 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  27. G. Carnevale, P. Martin, Geophys. Astrophys. Fluid Dyn. 20, 131 (1982)

    Article  ADS  Google Scholar 

  28. A. Navarra, J. Tribbia, G. Conti, PloS ONE 8, e67022 (2013)

    Article  ADS  Google Scholar 

  29. T. Lundgren, Lect. Notes Phys. 12, 70 (1972)

    Article  ADS  Google Scholar 

  30. P.M. Morse, H. Feshbach, Methods of Theoretical Physics, Vol. 1 (McGraw-Hill, New York, 1953)

  31. R.W. Atherton, G.M. Homsy, Stud. Appl. Math. 54, 31 (1975)

    Article  Google Scholar 

  32. T.F. Nonnenmacher, in Recent Developments in Nonequilibrium Thermodynamics: Fluids and Related Topics (Springer, 1986) pp. 149--174

  33. T. Shah, R. Chattopadhyay, K. Vaidya, S. Chakraborty, Phys. Rev. E 92, 062927 (2015)

    Article  ADS  Google Scholar 

  34. E. Celeghini, M. Rasetti, G. Vitiello, Ann. Phys. 215, 156 (1992)

    Article  ADS  Google Scholar 

  35. A. Vanossi, N. Manini, M. Urbakh, S. Zapperi, E. Tosatti, Rev. Mod. Phys. 85, 529 (2013)

    Article  ADS  Google Scholar 

  36. M.V. Berry, J.P. Keating, in Supersymmetry and Trace Formulae: Chaos and Disorder, edited by J.P. Keating, D.E. Khmelnitski, I.V. Lerner (Kluwer Academic/Plenum Publishers, New York, 1999)

  37. M.V. Berry, J.P. Keating, SIAM Rev. 41, 236 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  38. G. Sierra, J. Rodríguez-Laguna, Phys. Rev. Lett. 106, 200201 (2011)

    Article  ADS  Google Scholar 

  39. F. Riewe, Phys. Rev. E 53, 1890 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  40. S. Sieniutycz, Conservation laws in variational thermo-hydrodynamics, Vol. 279 (Springer Science & Business Media, 2012)

  41. P. Névir, M. Sommer, J. Atmos. Sci. 66, 2073 (2009)

    Article  ADS  Google Scholar 

  42. R. Salazar, M.V. Kurgansky, J. Phys. A: Math. Theor. 43, 305501 (2010)

    Article  Google Scholar 

  43. R. Blender, G. Badin, J. Phys. A: Math. Theor. 48, 105501 (2015)

    Article  ADS  Google Scholar 

  44. B. Leimkuhler, S. Reich, Simulating Hamiltonian Dynamics (Cambridge University Press, 2004)

  45. M. Sommer, P. Névir, Q. J. R. Met. Soc. 135, 485 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gualtiero Badin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blender, R., Badin, G. Viscous dissipation in 2D fluid dynamics as a symplectic process and its metriplectic representation. Eur. Phys. J. Plus 132, 137 (2017). https://doi.org/10.1140/epjp/i2017-11440-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2017-11440-x

Navigation