Skip to main content
Log in

Metamaterial composed of coated nano-spheres at infrared frequencies

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

A negative index of refraction in a three-dimensional collection of coated nano-spheres is observed in the terahertz (THz) spectral region. This negative-index metamaterial is a binary composite of two different types of coated nano-spheres (SiO2@SiC/SiO2@AZO); in one type SiO2 spheres coated with a semiconductor (SiC) nano-shell and in another one, nano-shells made of a plasmonic material (AZO). The effective medium parameters derived by extended Maxwell-Garnett (EMG) effective medium theory by specifying the Mie resonances of the coated nano-spheres in the binary composite. The results are supplemented with frequency band structure and transmission curves, calculated by an accurate electromagnetic multiple-scattering technique. The predictions of the EMG theory are in agreement with those of the multiple-scattering technique, providing the effective medium approximation a helpful guide for the experimental works in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V.G. Veselago, Sov. Phys. Usp. 10, 509 (1968).

    Article  ADS  Google Scholar 

  2. R.A. Silin, Opt. Spectrosc. 44, 109 (1978).

    ADS  Google Scholar 

  3. J.B. Pendry, Contemp. Phys. 45, 191 (2004).

    Article  ADS  Google Scholar 

  4. D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat-Nasser, S. Schultz, Phys. Rev. Lett. 84, 4184 (2000).

    Article  ADS  Google Scholar 

  5. R.A. Shelby, D.R. Smith, S. Schultz, Science 292, 77 (2001).

    Article  ADS  Google Scholar 

  6. J.B. Pendry, A.J. Holden, W.J. Stewart, I. Youngs, Phys. Rev. Lett. 76, 4773 (1996).

    Article  ADS  Google Scholar 

  7. J.B. Pendry, A.J. Holden, D.J. Robbins, W.J. Stewart, IEEE Trans. Microwave Theory Tech. 47, 2075 (1999).

    Article  ADS  Google Scholar 

  8. T.J. Yen, W.J. Padilla, N. Fang, D.C. Vier, D.R. Smith, J.B. Pendry, D.N. Basov, X. Zhang, Science 303, 1494 (2004).

    Article  ADS  Google Scholar 

  9. V. Yannopapas, A. Moroz, J. Phys.: Condens. Matter 17, 3717 (2005).

    ADS  Google Scholar 

  10. V.M. Shalaev, Nonlinear Optics of Random Media: Fractal Composites and Metal- Dielectric Films (Springer, Berlin, 2000).

  11. S. Bosch, J. Ferré-Borrull, N. Leinfellner, A. Canillas, Surf. Sci. 453, 9 (2000).

    Article  ADS  Google Scholar 

  12. J.C. Maxwell-Garnett, Philos. Trans. R. Soc. London, Ser. A 203, 385 (1904).

    Article  ADS  Google Scholar 

  13. C.G. Granqvist, O. Hunderi, Phys. Rev. B 18, 2897 (1978).

    Article  ADS  Google Scholar 

  14. W.T. Doyle, Phys. Rev. B 39, 9852 (1989).

    Article  ADS  Google Scholar 

  15. R. Ruppin, Opt. Commun. 182, 273 (2000).

    Article  ADS  Google Scholar 

  16. C. Bohren, J. Atmos. Sci. 43, 468 (1986).

    Article  ADS  Google Scholar 

  17. C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-Interscience, New York, 1983).

  18. R. Luo, Appl. Opt. 36, 8153 (1997).

    Article  ADS  Google Scholar 

  19. C.G. Parazzoli, R.B. Greegor, K. Li, B.E.C. Koltenbah, M. Tanielian, Phys. Rev. Lett. 90, 107401 (2003).

    Article  ADS  Google Scholar 

  20. A.A. Houck, J.B. Brock, I.L. Chuang, Phys. Rev. Lett. 90, 137401 (2003).

    Article  ADS  Google Scholar 

  21. S. O’Brien, J.B. Pendry, J. Phys.: Condens. Matter 14, 4035 (2002).

    ADS  Google Scholar 

  22. K.C. Huang, M.L. Povinelli, J.D. Joannopoulos, Appl. Phys. Lett. 85, 543 (2004).

    Article  ADS  Google Scholar 

  23. M.S. Wheeler, J.S. Aitchison, M. Mojahedi, Phys. Rev. B 72, 193103 (2005).

    Article  ADS  Google Scholar 

  24. V. Yannopapas, Phys. Rev. B 75, 035112 (2007).

    Article  ADS  Google Scholar 

  25. V. Yannopapas, Appl. Phys. A 87, 259 (2007).

    Article  ADS  Google Scholar 

  26. V. Yannopapas, Sol. State Commun. 204, 51 (2015).

    Article  Google Scholar 

  27. V. Yannopapas, Phys. Status Solid 1, 208 (2007).

    Google Scholar 

  28. V. Yannopapas, J. Phys.: Condens. Matter 20, 255201 (2008).

    Google Scholar 

  29. H. Ou, Y.Ou, A. Argyraki, S. Schimmel, M. Kaiser, P. Wellmann, M.K. Linnarsson, V. Jokubavicius, J. Sun, R. Liljedahl, M. Syväjärvi, Eur. Phys. J. B 87, 58 (2014).

    Article  ADS  Google Scholar 

  30. H. Ibach, H. Luth, Solid-State Physics (Springer, Berlin, 2003).

  31. H. Sadeghi, A. Zolanvar, A. Ranjgar, R. Norouzi, Plasmonics 9, 327 (2014).

    Article  Google Scholar 

  32. H. Sadeghi, A. Zolanvar, A. Ranjgar, R. Norouzi, J. Electron. Mater. 43, 4294 (2014).

    Article  ADS  Google Scholar 

  33. G.V. Naik, J. Kim, A. Boltasseva, Opt. Mater. Express 1, 1090 (2011).

    Article  Google Scholar 

  34. N. Stefanou, V. Yannopapas, A. Modinos, Comput. Phys. Commun. 132, 189 (2000).

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Sadeghi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadeghi, H., Ranjgar, A. & Zolanvar, A. Metamaterial composed of coated nano-spheres at infrared frequencies. Eur. Phys. J. Plus 130, 50 (2015). https://doi.org/10.1140/epjp/i2015-15050-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2015-15050-4

Keywords

Navigation