Skip to main content
Log in

On the Compton clock and the undulatory nature of particle mass in graphene systems

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In undulatory mechanics the rest mass of a particle is associated to a rest periodicity known as Compton periodicity. In carbon nanotubes the Compton periodicity is determined geometrically, through dimensional reduction, by the circumference of the curled-up dimension, or by similar spatial constraints to the charge carrier wave function in other condensed matter systems. In this way the Compton periodicity is effectively reduced by several orders of magnitude with respect to that of the electron, allowing for the possibility to experimentally test foundational aspects of quantum mechanics. We present a novel powerful formalism to derive the electronic properties of carbon nanotubes, in agreement with the results known in literature, from simple geometric and relativistic considerations about the Compton periodicity as well as a dictionary of analogies between particle and graphene physics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 109 (2009).

    Article  ADS  Google Scholar 

  2. M. Mecklenburg, B.C. Regan, Phys. Rev. Lett. 106, 116803 (2011).

    Article  ADS  Google Scholar 

  3. D. Dolce, EPL 102, 31002 (2013).

    Article  ADS  Google Scholar 

  4. D. Dolce, Ann. Phys. 327, 1562 (2012).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. D. Dolce, Ann. Phys. 327, 2354 (2012).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  6. D. Dolce, Found. Phys. 41, 178 (2011).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. G. ’t Hooft, J. Phys: Conf. Ser. 67, 012015 (2007).

    ADS  Google Scholar 

  8. G. ’t Hooft, The Cellular Automaton Interpretation of Quantum Mechanics. A View on the Quantum Nature of our Universe, Compulsory or Impossible? (2014) arXiv:1405.1548.

  9. L. de Broglie, Ann. Phys. 3, 22 (1925).

    MATH  Google Scholar 

  10. T.M. Rusin, W. Zawadzki, Phys. Rev. B 80, 045416 (2009).

    Article  ADS  Google Scholar 

  11. R. Penrose, Cycles of Time. An Extraordinary View of The Universe (Knopf, New York, 2011) chapt. 2.3.

  12. S.Y. Lan, P.C. Kuan, B. Estey, D. English, J.M. Brown, M.A. Hohensee, H. Müller, Science 339, 554 (2013).

    Article  ADS  Google Scholar 

  13. J.C. Charlier, X. Blase, S. Roche, Rev. Mod. Phys. 79, 677 (2007).

    Article  ADS  Google Scholar 

  14. J. de Woul, A. Merle, T. Ohlsson, Phys. Lett. B 714, 44 (2012).

    Article  ADS  Google Scholar 

  15. D. Dolce, A. Perali, Found. Phys. 44, 9 (2014) arXiv:1307.5062.

    Article  MathSciNet  Google Scholar 

  16. J.W.M. C.T. White, Nature 6688, 29 (1998).

    Article  ADS  Google Scholar 

  17. J. Zaanen, Nat. Phys. 10, 609 (2013).

    Article  Google Scholar 

  18. K. Zou, X. Hong, J. Zhu, Phys. Rev. B 84, 085408 (2011).

    Article  ADS  Google Scholar 

  19. A. Perali, D. Neilson, A.R. Hamilton, Phys. Rev. Lett. 110, 146803 (2013).

    Article  ADS  Google Scholar 

  20. H. Margolis, Nat. Phys. 2, 82 (2014).

    Google Scholar 

  21. T.M. Rusin, W. Zawadzki, J. Phys.: Condens. Matter 26, 215301 (2014).

    Google Scholar 

  22. P. Catillon, N. Cue, M.J. Gaillard, R. Genre, M. Gouanère, R.G. Kirsch, J.C. Poizat, J. Remillieux, L. Roussel, M. Spighel, Found. Phys. 28, 659 (2008).

    Article  ADS  Google Scholar 

  23. K.S. Novoselov, V.I. Fal’ko, L. Colombo, P.R. Gellert, M.G. Schwab, K. Kim, Nature 490, 192 (2012).

    Article  ADS  Google Scholar 

  24. I. Kenyon, General relativity (Oxford Science Publications, 1990).

  25. A. Perali, A. Bianconi, A. Lanzara, N.L. Saini, Solid State Commun 100, 181 (1996).

    Article  ADS  Google Scholar 

  26. D. Dolce, A. Perali, Testing Cellular Automata Interpretation of Quantum Mechanics in Graphene and Superconducting Systems (2014) prepared for DICE2014, to be published in J. Phys.: Conf. Ser.

  27. D.T. Son, M.A. Stephanov, Phys. Rev. D 69, 065020 (2004).

    Article  ADS  Google Scholar 

  28. A. Chodos, R.L. Jaffe, K. Johnson, C.B. Thorn, V.F. Weisskopf, Phys. Rev. D 9, 3471 (1974).

    Article  ADS  MathSciNet  Google Scholar 

  29. E. Witten, Adv. Theor. Math. Phys. 2, 505 (1998).

    MATH  MathSciNet  Google Scholar 

  30. M.A.H. Vozmediano, M.I. Katsnelson, F. Guinea, Phys. Rep. 496, 109 (2010).

    Article  ADS  MathSciNet  Google Scholar 

  31. A. Iorio, J. Phys. Conf. Ser. 442, 012056 (2013).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donatello Dolce.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dolce, D., Perali, A. On the Compton clock and the undulatory nature of particle mass in graphene systems. Eur. Phys. J. Plus 130, 41 (2015). https://doi.org/10.1140/epjp/i2015-15041-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2015-15041-5

Keywords

Navigation