Skip to main content
Log in

Increasing the laser damage threshold of the Nd:YAG crystal by ArF laser irradiation

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

An Erratum to this article was published on 31 July 2014

Abstract.

A Nd:YAG crystal sample was irradiated by 200 pulses of ArF excimer laser at 35mJ/cm^2 laser fluence and 1Hz repetition rate. The optical absorption of the Nd:YAG crystal was decreased in the whole spectral range of the ultraviolet visible near-infrared region after ArF laser irradiation and some oxygen vacancies of the Nd:YAG crystal were removed according to its additional absorption spectrum. A laser-induced damage threshold (LIDT) measurement of the ArF laser treated crystal was performed by linearly polarized 30ns, 1064nm single longitudinal mode, TEM00 laser pulses. The LIDT of the ArF-laser-irradiated crystal was found to be 302±35 J/cm^2, about three times higher than the LIDT of the unirradiated crystal. Thus, the laser-treated Nd:YAG crystal is preferred to apply as the laser amplifier medium, due to the possibility of further laser amplification caused by the higher damage threshold of the amplifier medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.M. Reda, C.R. Varney, F.A. Selim, Results Phys. 2, 123 (2012)

    Article  ADS  Google Scholar 

  2. R.A. Negres, P. DeMange, S.G. Demos, Opt. Lett. 30, 2766 (2005)

    Article  ADS  Google Scholar 

  3. X. Ling, Y. Zhao, D. Li, J. Shao, Zh. Fan, Opt. Commun. 283, 2728 (2010)

    Article  ADS  Google Scholar 

  4. G. Hu, Y. Zhao, D. Li, Q. Xiao, Opt. Express 20, 25169 (2012)

    Article  ADS  Google Scholar 

  5. S.G. Demos, P. DeMange, R.A. Negres, M.D. Feit, Opt. Express 18, 13788 (2010)

    Article  ADS  Google Scholar 

  6. K. Wang, Ch. Fang, J. Zhang, X. Sun, Sh. Wang, Q. Gu, X. Zhao, B. Wang, J. Cryst. Growth 287, 478 (2006)

    Article  ADS  Google Scholar 

  7. Q. Tan, J. Cryst. Growth 209, 861 (2000)

    Article  ADS  Google Scholar 

  8. J. Chen, T.C. Lu, Y. Xu, A.G. Xu, D.Q. Chen, J. Phys.: Condens. Matter 20, 325212 (2008)

    Google Scholar 

  9. S.M. Kaczmarek, G. Domianiak-Dzik, W. Ryba-Romanowski, J. Kisielewski, J. Wojtkowska, Cryst. Res. Technol. 34, 1031 (1999)

    Article  Google Scholar 

  10. M. Jaberi, A.H. Farahbod, H. Rahimpour, Iran. J. Phys. Res. 13, 35 (2013)

    Google Scholar 

  11. C.R. Varney, D.T. Mackay, S.M. Reda, F.A. Selim, J. Phys. D: Appl. Phys. 45, 015103 (2012)

    Article  ADS  Google Scholar 

  12. B.T. Dol, A.V. Smith, Appl. Opt. 14, 3509 (2009)

    Google Scholar 

  13. J. Chen, G.Zhaoa, Q. Dong, Yuchong Ding, J. Alloy. Compd. 506, 500 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Panahibakhsh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panahibakhsh, S., Jelvani, S., Maleki, M.H. et al. Increasing the laser damage threshold of the Nd:YAG crystal by ArF laser irradiation. Eur. Phys. J. Plus 129, 37 (2014). https://doi.org/10.1140/epjp/i2014-14037-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2014-14037-y

Keywords

Navigation