Skip to main content
Log in

Wave-particle and wave-wave interactions in hot plasmas: a French historical point of view

  • Published:
The European Physical Journal H Aims and scope Submit manuscript

Abstract

The first researches on nuclear fusion for energy applications marked the entrance of hot plasmas into the laboratory. It became necessary to understand the behavior of such plasmas and to learn how to manipulate them. Theoreticians and experimentalists, building on the foundations of empirical laws, had to construct this new plasma physics from first principles and to explain the results of more and more complicated experiments. Along this line, two important topics emerged: wave-particle and wave-wave interactions. Here, their history is recalled as it has been lived by a French team from the end of the sixties to the beginning of the twenty-first century.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adam J.-C., G. Laval and D. Pesme. 1979a. Reconsideration of quasilinear theory. Phys. Rev. Lett. 43: 1671–1675.

    ADS  Google Scholar 

  2. Adam J.-C., M.N. Bussac and G. Laval. 1979b. Stabilization of a linearly unstable mode by resonant coupling to damped modes. Intrinsic Stochasticity in Plasmas, Les Editions de Physique, Orsay (France), pp. 415–423.

  3. Adam J.-C., G. Laval and D. Pesme. 1981. Effets des interactions résonnantes ondes particules en turbulence faible des plasmas. Ann. Phys. 6: 319.

    Google Scholar 

  4. Adam J.-C., A. Gourdin-Serveniere and G. Laval. 1982. Efficiency of resonant absorption of electromagnetic waves in an inhomogeneous plasma. Phys. Fluids 25: 376–383.

    ADS  MATH  Google Scholar 

  5. Adam J.-C., A. Héron, S. Guérin et al. 1997. Anomalous Absorption of very high-intensity Laser pulse Propagating through a moderately dense plasma. Phys. Rev. Lett. 78: 4765–4768.

    ADS  Google Scholar 

  6. Adam J.-C., A. Héron, G. Laval et al. 2000. Opacity of an underdense plasma due to the parametric instabilities of an ultra- intense laser pulse. Phys. Rev. Lett. 5: 3598–3601.

    ADS  Google Scholar 

  7. Akhiezer A.I. and R.V. Polovin. 1956. Theory of wave motion of an electron plasma. Soviet Phys. JETP 3: 696–705.

    MathSciNet  MATH  Google Scholar 

  8. Andreev A.A. and V.T. Tikhonchuk. 1989. Effect of trapped particles on stimulated Brillouin scattering in a plasma. Sov. Phys. JETP 68: 1135–1142.

    Google Scholar 

  9. Andreev A.A., C. Riconda, V.T. Tikhonchuk et al. 2006. Short light pulse amplification and compression by stimulated Brillouin scattering in plasmas in the strong coupling regime. Phys. Plasmas 13: 053110.

    ADS  Google Scholar 

  10. Bakai A.S., and Y.S. Sigov. 1977. Collisionless relaxation of plasma with unstable function of electron-distribution function. Dokl. Akad. Nauk. SSR 237: 1326–1329 [Sov. Phys. Dokl. 22: 734–737].

    ADS  Google Scholar 

  11. Baker K.L., R.P. Drake, B.S. Bauer et al. 1997. Observation of the Langmuir decay instability driven by stimulated Raman scattering. Phys. Plasmas 4: 3012–3020.

    ADS  Google Scholar 

  12. Baldis H.A., D.M. Villeneuve, C. Labaune et al. 1991. Coexistence of stimulated Raman and Brillouin scattering in laser-produced plasmas. Phys. Fluids B 3: 2341–48.

    ADS  Google Scholar 

  13. Barr H.C., P. Mason and D.M. Parr. 1999. Electron parametric instabilities driven by relativistically intense laser light in plasma. Phys. Rev. Lett. 83: 1606–09.

    ADS  Google Scholar 

  14. Berger R.L., S. Brunner, T. Chapman et al. 2013. Electron and ion kinetic effects on non-linearly driven electron plasma and ion acoustic waves. Phys. Plasmas 20: 032107.

    ADS  Google Scholar 

  15. Berndtson J.T., J.A. Heikkinen, S.J. Karttunen et al. 1994. Analysis of velocity diffusion of electrons with Vlasov-Poisson simulations. Plasma Phys. Control. Fusion 36: 57.

    ADS  Google Scholar 

  16. Bernstein I.B., and F. Engelmann. 1966. Quasi-Linear Theory of Plasma Waves. Phys. Fluids 9: 937–952.

    ADS  MathSciNet  Google Scholar 

  17. Besse N., Y. Elskens, D. Escande et al. 2011. Validity of quasilinear theory: refutations and new numerical confirmation. Plasma Phys. Control. Fusion 53: 025012–48.

    ADS  Google Scholar 

  18. Bonnaud G., D. Pesme and R. Pellat. 1990. Nonlinear Raman scattering behavior with Langmuir and sound waves coupling in a homogeneous plasma. Phys. Fluids B 2: 1618–25.

    ADS  Google Scholar 

  19. Brossier P., P. Deschamps, R. Gravier et al. 1971. Experimental Observation of Drift Instabilities in a Collisionless Plasma. Phys. Rev. Lett. 26: 124–127.

    ADS  Google Scholar 

  20. Bussac M.N. 1982. Asymptotic Solutions of the Nonlinear Three-Wave System. Phys. Rev. Lett. 49: 1939–1942.

    ADS  Google Scholar 

  21. Bussac M.N., P. Lochak, C. Meunier et al. 1985. Soliton Generation in the Forced Non-linear Schrodinger Equation. Physica D 17: 313–322.

    ADS  MathSciNet  Google Scholar 

  22. Casanova M., G. Laval, R. Pellat et al. 1985. Self-Generated Loss of Coherency in Brillouin Scattering and Reduction of Reflectivity. Phys. Rev. Lett. 54: 2230–2233.

    ADS  Google Scholar 

  23. Chirikov B.V. 1979. A Universal Instability of many dimensional oscillator systems. Phys. Rep. 52: 263–379.

    ADS  MathSciNet  Google Scholar 

  24. Cohen B.I. and C. Max. 1979. Stimulated scattering of light by ion modes in a homogeneous plasma: Space-time evolution. Phys. Fluids 22: 1115–1132.

    ADS  MATH  Google Scholar 

  25. Cohen B.I., L. Divol, A.B. Langdon et al. 2005. Saturation of Stimulated Brillouin backscattering in two-dimensional kinetic ion simulations. Phys. Plasmas 12: 052703.

    ADS  Google Scholar 

  26. Cohen B.I., E.A. Williams, R.L. Berger et al. 2009a. Stimulated Brillouin backscattering and ion acoustic wave secondary instability. Phys. Plasmas 16: 032701–18.

    ADS  Google Scholar 

  27. Cohen B.I., E.A. Williams, R.L. Berger et al. 2009b. Erratum : “Stimulated Brillouin backscattering and ion acoustic wave secondary instability” [Phys. Plasmas 16: 032701 (2009)]. Phys. Plasmas 16: 089902.

    ADS  Google Scholar 

  28. Couairon A. and P. Mora. 2001. Absolute and convective nature of the modulational and Raman instabilities in the relativistic regime. Phys. Plasmas 8: 3434–3442.

    ADS  Google Scholar 

  29. Crouseilles N., Th. Respaud and E. Sonnendrücker. 2009. A forward semi-Lagrangian method for the numerical solution of the Vlasov equation. Comput. Phys. Commun. 180: 1730–1745.

    ADS  MathSciNet  MATH  Google Scholar 

  30. Denavit J. 1972. Numerical simulation of plasmas with periodic smoothing in phase space. J. Comput. Phys. 9: 75–98.

    ADS  MATH  Google Scholar 

  31. Depierreux S., J. Fuchs, Ch. Labaune et al. 2000. First Observation of Ion Acoustic Waves Produced by the Langmuir Decay Instability. Phys. Rev. Lett. 84: 2869–2872.

    ADS  Google Scholar 

  32. Detering F., J.-C. Adam, A. Heron et al. 2006. Kinetic effects in stimulated Brillouin scattering. J. Phys. IV 133: 339–342.

    Google Scholar 

  33. Dewar R.L. 1972. Frequency Shift Due to Trapped Particles. Phys. Fluids 15: 712–714.

    ADS  Google Scholar 

  34. Diamond P.H., S.I. Itoh and K. Itoh. 2010. Modern Plasma Physics 1: Physical Kinetics of Turbulent Plasmas (Cambridge University Press, Cambridge, 2010).

  35. Divol L., B.I. Cohen, E.A. Williams et al. 2003a. Nonlinear saturation of stimulated Brillouin scattering for long time scales. Phys. Plasmas 10: 3728–3732.

    ADS  Google Scholar 

  36. Divol L., R.L. Berger, B.I. Cohen et al. 2003b. Modeling the nonlinear saturation of stimulated Brillouin backscatter in laser heated plasmas. Phys. Plasmas 10: 1822–1828.

    ADS  Google Scholar 

  37. Doxas I. and J.R. Cary. 1997. Numerical observation of turbulence enhanced growth rates. Phys. Plasmas 4: 2508–18.

    ADS  Google Scholar 

  38. Drake J.F., P.K. Kaw, Y.C. Lee et al. 1974. Parametric instabilities of electromagnetic waves in plasmas. Phys. Fluids 17: 778–785.

    ADS  Google Scholar 

  39. Drake R.P., E.A. Williams, P.E. Young et al. 1988. Evidence that stimulated Raman scattering in laser-produced plasmas is an absolute instability. Phys. Rev. Lett. 60: 1018–1021.

    ADS  Google Scholar 

  40. Drummond W.E. and D. Pines. 1962. Nonlinear stability of plasma oscillations. Nucl. Fusion Suppl. 3: 1049–57.

    Google Scholar 

  41. DuBois D.F. 1981. Renormalized plasma turbulence theory: A quasiparticle picture. Phys. Rev. A 23: 865–882.

    ADS  Google Scholar 

  42. DuBois D.F. and D. Pesme. 1985. Direct interaction approximation for Vlasov turbulence from the Kadomtsev weak coupling approximation. Phys. Fluids 28: 1305–1317.

    ADS  MATH  Google Scholar 

  43. Dupree T.H. 1966. A Perturbation Theory for Strong Plasma Turbulence. Phys. Fluids 9: 1773–1782.

    ADS  MathSciNet  Google Scholar 

  44. Dupree T.H. 1970. Theory of resistivity in collisionless plasma. Phys. Rev. Lett. 25: 789–792.

    ADS  Google Scholar 

  45. Escande D. and F. Doveil. 1981. Renormalization method for computing the threshold of the large-scale stochastic instability in two degrees of freedom Hamiltonian systems. J. Stat. Phys. 26: 257–284.

    ADS  MathSciNet  Google Scholar 

  46. Eyink E. and U. Frisch. 2011. A Voyage Through Turbulence. Edited by P. Davidson, Y. Kaneda, K. Moffat and K. Sreenivasaan (Cambridge University Press), pp. 329–364.

  47. Falfovich V. 2011. A Voyage Through Turbulence. Edited by P. Davidson, Y. Kaneda, K. Moffat and K. Sreenivasaan (Cambridge University Press), pp. 209–236.

  48. Faure J., Y. Glinec, A. Pukhov et al. 2004. A laser-plasma accelerator producing monoenergetic electron beams. Nature 431: 541–544.

    ADS  Google Scholar 

  49. Forslund D., J. Kindel and E. Lindman. 1975. Theory of stimulated scattering processes in laser-irradiated plasmas. Phys. Fluids 18: 1002–1016.

    ADS  Google Scholar 

  50. Fortov V.E. 2016. High-Power Lasers in High-Energy-Density Physics. Springer Ser. Mater. Sci. 216: 167–275.

    ADS  Google Scholar 

  51. Fouquet Th. and D. Pesme. 2008. Increase of the Backward Raman Reflectivity Caused by the Langmuir Decay Instability in an Inhomogeneous Plasma: The Loss of Gradient Stabilization. Phys. Rev. Lett. 100: 055006–10.

    ADS  Google Scholar 

  52. Fuchs J., G. Malka, J.-C. Adam et al. 1998. Dynamics of Subpicosecond Relativistic Laser Pulse Self-Channeling in an Underdense Preformed Plasma. Phys. Rev. Lett. 80: 1658–1661.

    ADS  Google Scholar 

  53. Garban-Labaune C., E. Fabre, C.E. Max et al. 1982. Effect of Laser Wavelength and Pulse Duration on Laser-Light Absorption and Back Reflection. Phys. Rev. Lett. 48: 1018–1021.

    ADS  Google Scholar 

  54. Garnier J. 1999. Statistics of the hot spots of smoothed beams produced by random phase plates revisited. Phys. Plasmas 6: 1601–10.

    ADS  Google Scholar 

  55. Ginzburg V.I. 1970. The Propagation of Electromagnetic Waves in Plasmas, 2nd Ed. (Pergamon, New York).

  56. Glenzer S.H., R.L. Berger, L.M. Divol et al. 2001. Reduction of stimulated scattering losses from hohlraum plasmas with laser beam smoothing. Phys. Plasmas 8: 1692–1696.

    ADS  Google Scholar 

  57. Grismayer T., A. Couairon, P. Mora et al. 2004. Absolute and convective nature of Raman instability in relativistic hot plasmas. Phys. Plasmas 11: 4814–4823.

    ADS  Google Scholar 

  58. Guérin S., G. Laval, P. Mora et al. 1995. Modulational and Raman instabilities in the relativistic regime. Phys. Plasmas 2: 2807–2814.

    ADS  Google Scholar 

  59. Guérin S., P. Mora, J.-C. Adam et al. 1996. Propagation of ultra-intense laser pulses through overdense plasma layers. Phys. Plasmas 3: 2693–2701.

    ADS  Google Scholar 

  60. Guzdar P., C.S. Liu and R. Lehmberg. 1996. Stimulated Brillouin scattering in the strong coupling regime. Phys. Plasmas 3: 3414–3419.

    ADS  Google Scholar 

  61. Hartmann D.A., C.F. Driscoll, T.M. O’Neil et al. 1995. Measurements of the weak warm beam instability. Phys. Plasmas 2: 654–677.

    ADS  Google Scholar 

  62. Hasegawa A. and K. Mima. 1978. Pseudo-three-dimensional turbulence in magnetized nonuniform plasma. Phys. Fluids 21: 87–92.

    ADS  MathSciNet  MATH  Google Scholar 

  63. Hasselmann K. 1966. Feynman diagrams and interaction rules of wave-wave scattering processes. Rev. Geophys. 4: 1–32.

    ADS  Google Scholar 

  64. Horton W. 1999. Drift waves and transport. Rev. Mod. Phys. 71: 735–841.

    ADS  Google Scholar 

  65. Hüller S. 1991a. Stimulated Brillouin scattering off nonlinear ion acoustic waves. Phys. Fluids B 3: 3317–3330.

    ADS  Google Scholar 

  66. Hüller S. 1991b. Nonstationary stimulated Brillouin backscattering. Phys. Fluids B 3: 3339–3352.

    ADS  Google Scholar 

  67. Ikezi H., K. Schwarzenegger, A.L. Simons et al. 1978. Nonlinear self-modulation of ion-acoustic waves. Phys. Fluids 21: 239–248.

    ADS  Google Scholar 

  68. Kadomtsev B.B. and O.P. Pogutse. 1971. Theory of Beam-Plasma Interaction. Phys. Fluids 14: 2470–2475.

    ADS  Google Scholar 

  69. Kaw P. and J. Dawson. 1970. Relativistic non-linear propagation of laser beams in cold overdense plasmas. Phys. Fluids 13: 472–481.

    ADS  Google Scholar 

  70. Kim J.H. and P.W. Terry. 2011. A self-consistent three-wave coupling model with complex linear frequencies. Phys. Plasmas 18: 092308

    ADS  Google Scholar 

  71. Kraichnan R.H. 1959. The structure of isotropic turbulence at very high Reynolds numbers. J. Fluid Mechan. 5: 497–543.

    ADS  MathSciNet  MATH  Google Scholar 

  72. Kruer W.L. 1988. The physics of laser plasma interactions. Frontiers in Physics (Addison-Wesley Publishing Co), Vol. 73.

  73. Labaune C., S. Baton, T. Jalinaud et al. 1992. Filamentation in long scale length plasmas: Experimental evidence and effects of laser spatial incoherence. Phys. Fluids B 4: 2224–31.

    ADS  Google Scholar 

  74. Labaune C., H.A. Baldis, B.S. Bauer et al. 1998. Time-resolved measurements of secondary Langmuir waves produced by the Langmuir decay instability in a laser-produced plasma. Phys. Plasmas 5: 234–242.

    ADS  Google Scholar 

  75. Landau L. 1946. On the vibrations of the electronic plasma. J. Phys. (USSR) 10: 25.

    MathSciNet  MATH  Google Scholar 

  76. Lancia L., J.-R. Marquès, M. Nakatsutsunami et al. 2010. Experimental Evidence of Short Light Pulse Amplification Using Strong-Coupling Stimulated Brillouin Scattering in the Pump Depletion Regime. Phys. Rev. Lett. 104: 025001–04.

    ADS  Google Scholar 

  77. Lancia L., A. Giribono, L. Vassura et al. 2016. Signatures of the Self-Similar Regime of Strongly Coupled Stimulated Brillouin Scattering for Efficient Short Laser Pulse Amplification. Phys. Rev. Lett. 116: 075001–04.

    ADS  Google Scholar 

  78. Larroche O., M. Casanova, D. Pesme et al. 1986. Soliton emission in the forced non-linear Schrödinger equation. Laser and Particle Beams 4: 545–553.

    ADS  Google Scholar 

  79. Laval G., R. Pellat and M. Perulli. 1969. Study of the disintegration of Langmuir waves. Plasma Phys. 11: 579.

    ADS  Google Scholar 

  80. Laval G. and R. Pellat. 1972. Plasma Physics. Les Houches (Gordon and Breach, New York, 1972).

  81. Laval G., R. Pellat and D. Pesme. 1976. Absolute parametric excitation by an imperfect pump or by turbulence in an inhomogeneous plasma. Phys. Rev. Lett. 36: 192–196.

    ADS  Google Scholar 

  82. Laval G., R. Pellat and D. Pesme. 1977. Parametric instabilities in the presence of space-time random fluctuations. Phys. Fluids 20: 2049–2057.

    ADS  MathSciNet  MATH  Google Scholar 

  83. Laval G. and D. Pesme. 1983a. Breakdown of quasilinear theory for incoherent 1-D Langmuir waves. Phys. Fluids 26: 52–65.

    ADS  MATH  Google Scholar 

  84. Laval G. and D. Pesme. 1983b. Inconsistency of quasilinear theory. Phys. Fluids 26: 66–68.

    ADS  MATH  Google Scholar 

  85. Laval G. and D. Pesme. 1983c. Self-consistency effects in quasilinear theory: a model for turbulent trapping. In Nonlinear and turbulent processes in physics. Volume 1. Nonlinear effects in plasma physics, astrophysics and elementary particle theory.

  86. Laval G. and D. Pesme. 1984. Self-consistency effects in quasilinear theory: a model for turbulent trapping. Phys. Rev. Lett. 53: 270–273.

    ADS  Google Scholar 

  87. Laval G. and D. Pesme. 1999. Controversies about quasilinear theory. Plasma Phys. Control. Fusion A 41: 239.

    ADS  Google Scholar 

  88. Lefebvre E. and G. Bonnaud. 1995. Transparency/Opacity of a solid target illuminated by an ultra-high intensity laser pulse. Phys. Rev. Lett. 74: 2002–2005.

    ADS  Google Scholar 

  89. Lehmann G., F. Schluck and K.H. Spatschek. 2012. Regions for Brillouin seed pulse growth in relativistic laser-plasma interaction. Phys. Plasmas 19: 093120.

    ADS  Google Scholar 

  90. Liang Y.M. and P.H. Diamond. 1993. Revisiting the validity of quasilinear theory. Phys. Fluids B 5: 4333–4340.

    ADS  Google Scholar 

  91. Malkin V.M., G. Shvets and N.J. Fish. 1999. Fast Compression of Laser Beams to Highly Overcritical Powers. Phys. Rev. Lett. 82: 4448–4451.

    ADS  Google Scholar 

  92. Malmberg J.H. and C.B. Wharton. 1964. Collisionless Damping of Electrostatic Plasma Waves. Phys. Rev. Lett. 13: 184–187.

    ADS  Google Scholar 

  93. Maximov A.V., I.G. Ourdev, D. Pesme et al. 2001. Plasma induced smoothing of a spatially incoherent laser beam and reduction of backward stimulated Brillouin scattering. Phys. Plasmas 8: 1319–1328.

    ADS  Google Scholar 

  94. Meunier C., M.N. Bussac, and G. Laval. 1982. Intermittency at the onset of stochasticity in nonlinear resonant coupling processes. Physica D: Nonlinear Phenomena 4: 236–243.

    ADS  MATH  Google Scholar 

  95. Morales G.J. and T.M. O’Neil. 1972. Nonlinear Frequency Shift of an Electron Plasma Wave. Phys. Rev. Lett. 28: 417–423.

    ADS  Google Scholar 

  96. Mouhot C. and C. Villani. 2011. On Landau damping. Acta Mathematica 207: 29–201.

    MathSciNet  MATH  Google Scholar 

  97. Nicholson D.R. and A.N. Kaufman. 1974. Parametric Instabilities in Turbulent, Inhomogeneous Plasma. Phys. Rev. Lett. 3: 1207–1210.

    ADS  Google Scholar 

  98. O’Neil T.M. 1965. Collisionless Damping of Nonlinear Plasma Oscillations. Phys. Fluids 8: 2255.

    ADS  MathSciNet  Google Scholar 

  99. O’Neil T.M., J.H. Winfrey and J.H. Malmberg. 1971. Nonlinear Interaction of a Small Cold Beam and a Plasma. Phys. Fluids 14: 1204–1212.

    ADS  Google Scholar 

  100. Pesme D., G. Laval and R. Pellat. 1973. Parametric Instabilities in Bounded Plasmas. Phys. Rev. Lett. 31: 203–206.

    ADS  Google Scholar 

  101. Pesme D. and D.F. DuBois. 1985. Reduced DIA equations for the weak warm beam instability in the strong mode-coupling limit. Phys. Fluids 28: 1318–1341.

    ADS  MATH  Google Scholar 

  102. Pesme D., W. Rozmus, V.T. Tikhonchuk et al. 2000. Resonant Instability of Laser Filaments in a Plasma. Phys. Rev. Lett. 84: 278–281.

    ADS  Google Scholar 

  103. Pesme D., S. Hüller, J. Myatt et al. 2002. Laser-plasma interaction studies in the context of megajoule lasers for inertial fusion. Plasma Phys. Control. Fusion 44: B53–B67.

    Google Scholar 

  104. Pesme D., C. Riconda and V.T. Tikhonchuk. 2005. Parametric instability of a driven ion-acoustic wave. Phys. Plasmas 12: 092101–28.

    ADS  Google Scholar 

  105. Pesme D., C. Riconda and V.T. Tikhonchuk. 2009. Erratum: [Parametric instability of a driven ion-acoustic wave. Phys. Plasmas 12: 092101 (2005)]. Phys. Plasmas 12: 089903.

    ADS  Google Scholar 

  106. Ping Y., W. Cheng, S. Suckewer et al. 2004. Amplification of ultrashort laser pulses by a resonant Raman scheme in a gas-jet plasma. Phys. Rev. Lett. 92: 175007–175010.

    ADS  Google Scholar 

  107. Quesnel B., P. Mora, J.-C. Adam et al. 1997a. Electron parametric instabilities of ultra-intense short laser pulses propagating in plasmas. Phys. Rev. Lett. 78: 2132–2135.

    ADS  Google Scholar 

  108. Quesnel B., P. Mora, J.-C. Adam et al. 1997b. Electron parametric instabilities of ultra-intense laser pulses propagating in plasma of arbitrary density. Phys. Plasmas 4: 3358–3368.

    ADS  Google Scholar 

  109. Riconda C., S. Hüller, J. Myatt et al. 2000. Kinetic Effects on the Ion Sound Waves Generated by Stimulated Brillouin Scattering of a Spatially Smoothed Laser beam. Phys. Scr. 84: 217–220.

    Google Scholar 

  110. Riconda C., A. Heron, D. Pesme et al. 2005a. Electron Kinetic Effects in the Nonlinear evolution of a Driven Ion-Acoustic Wave. Phys. Rev. Lett. 94: 055003–055006.

    ADS  Google Scholar 

  111. Riconda C., A. Heron, D. Pesme et al. 2005b. Electron and ion kinetic effects in the saturation of a driven ion-acoustic Wave. Phys. Plasmas 12: 112308–13

    ADS  Google Scholar 

  112. Riconda C., S. Weber, L. Lancia et al. 2013. Spectral characteristics of ultra-short laser pulses in plasma amplifiers. Phys. Plasmas 20: 083115.

    ADS  Google Scholar 

  113. Rose H.A. and D.F. DuBois. 1993. Statistical properties of laser hot spots produced by a random phase plate. Phys. Fluids B 5: 590–596.

    ADS  Google Scholar 

  114. Rosenbluth M.N. 1972. Parametric Instabilities in Inhomogeneous Media. Phys. Rev. Lett. 29: 565–568.

    ADS  Google Scholar 

  115. Rousse A., P. Audebert, J.-P. Geindre et al. 1994. Efficient Kα x-ray source from femtosecond laser-produced plasmas. Phys. Rev. E 50: 2200.

    ADS  Google Scholar 

  116. Rousseaux C., M.R. Le Gloahec, S.D. Baton et al. 2002. Strong absorption, intense forward-Raman scattering and relativistic electrons driven by a short, high intensity laser pulse through moderately underdense plasmas. Phys. Plasmas 9: 4261–4269.

    ADS  Google Scholar 

  117. Rudakov L.I. and R.Z. Sagdeev. 1961. On the instability of a nonuniform plasma in a strong magnetic field. Soviet Phys. Doklady 6: 415.

    ADS  MathSciNet  Google Scholar 

  118. Sagdeev R.Z. and A.A. Galeev. 1969. Nonlinear Plasma Theory. Benjamin, New York.

  119. Sanbonmatsu K.Y., H.X. Vu, D.F. DuBois et al. 1999. New Paradigm for the Self-Consistent Modeling of Wave-Particle and Wave-Wave Interactions in the Saturation of Electromagnetically Driven Parametric Instabilities. Phys. Rev. Lett. 82: 932–935.

    ADS  Google Scholar 

  120. Shapiro V.D. and R.Z. Sagdeev. 1997. Nonlinear wave-particle interaction and conditions for the applicability of quasilinear theory. Phys. Report 283: 49–71.

    ADS  Google Scholar 

  121. Suckewer S. and P. Jaegle. 2009. X-Ray laser: past, present, and future. Laser Phys. Lett. 6: 411–436.

    Google Scholar 

  122. Tabak M., D.S. Clark, S.P. Hatchett et al. 2005. Review of progress in Fast Ignition. Phys. Plasmas 12: 057305.

    ADS  Google Scholar 

  123. Theilhaber K., G. Laval and D. Pesme. 1987. Numerical Simulations of turbulent trapping in the weak beam-plasma instability. Phys. Fluids 30: 3129–3149.

    ADS  Google Scholar 

  124. Tikhonchuk V.T. Ph. Mounaix and D. Pesme. 1997. Stimulated Brillouin scattering reflectivity in the case of a spatially smoothed laser beam interacting with an inhomogeneous plasma. Phys. Plasmas 4: 2658–2669.

    ADS  Google Scholar 

  125. Tsunoda S.I., F. Doveil and J.H. Malmberg. 1987. Experimental test of the quasilinear theory of the interaction between a weak warm electron beam and a spectrum of waves. Phys. Rev. Lett. 58: 1112–1115.

    ADS  Google Scholar 

  126. Tsunoda S.I., F. Doveil and J.H. Malmberg. 1991. Experimental test of quasilinear theory. Phys. Fluids B 3: 2747–2757.

    ADS  Google Scholar 

  127. Tsytovich V.N. 1967. Non-linear effects in a plasma. PhysicsUspekhi 9: 805–836.

    Google Scholar 

  128. Turnbull D., S. Li, A. Morozov et al. 2012. Possible origins of a time-resolved frequency shift in Raman plasma amplifiers. Phys. Plasmas 19: 073103.

    ADS  Google Scholar 

  129. Vedenov A.A., E.P. Velikhov and R.Z. Sagdeev. 1962. Quasilinear theory of plasma oscillations. Nucl. Fusion Suppl. 2: 465–75

    Google Scholar 

  130. Villani C. 2010. Landau damping. Proceedings of the International Congress of Mathematicians, Hyderabad, India, 2010.

  131. Villani C. 2012. Le théorème vivant. Grasset edit.

  132. Weber S., C. Riconda, L. Lancia et al. 2013. Amplification of Ultrashort Laser Pulses by Brillouin Backscattering in Plasmas. Phys. Rev. Lett. 111: 055004–055007.

    ADS  Google Scholar 

  133. Wersinger J.-M., J.M. Finn and E. Ott. 1979. Bifurcations and strange behavior in coupled three waves system. Intrinsic Stochasticity in Plasmas, Les Editions de Physique, Orsay (France), p. 403.

  134. Wersinger J.-M., J.M. Finn and E. Ott. 1980. Bifurcations and strange behavior in instability saturation by nonlinear mode coupling. Phys. Rev. Lett. 44: 453–456.

    ADS  MATH  Google Scholar 

  135. White R., P. Kaw and D. Pesme. 1974. Absolute parametric instabilities in inhomogeneous plasmas. Nucl. Fusion 14: 45–51.

    Google Scholar 

  136. Wilks S.C., W.L. Kruer, M. Tabak et al. 1992. Absorption of ultra-intense laser pulses. Phys. Rev. Lett. 69: 1383–1386.

    ADS  Google Scholar 

  137. Williams E.A., B.I. Cohen, L. Divol et al. 2004. Effects of ion trapping on crossed-laser-beam stimulated Brillouin scattering. Phys. Plasmas 11: 231–244.

    ADS  Google Scholar 

  138. Young P., E.A. Williams and K.G. Estabrook. 1994. Observations of Transition to Strongly Coupled Stimulated Brillouin Scattering in Laser-Plasma Interactions. Phys. Rev. Lett. 73: 2051–2054.

    ADS  Google Scholar 

  139. Zakharov V.E. 1972. Collapse of Langmuir Waves. Soviet J. Exper. Phys. 35: 908.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guy Laval.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laval, G., Pesme, D. & Adam, JC. Wave-particle and wave-wave interactions in hot plasmas: a French historical point of view. EPJ H 43, 421–458 (2018). https://doi.org/10.1140/epjh/e2016-70050-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjh/e2016-70050-2

Navigation